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Abstract—Exascale HPC systems are being designed with
accelerators, such as GPUs, to accelerate parts of applications.
In machine learning workloads as well as large-scale simulations
that use GPUs as accelerators, the CPU (or host) memory is
currently used as a buffer for data transfers between GPU
(or device) memory and the file system. If the CPU does not
need to operate on the data, then this is sub-optimal because
it wastes host memory by reserving space for duplicated data.
Furthermore, this ‘“bounce buffer’” approach wastes CPU cycles
spent on transferring data. A new technique, NVIDIA GPUDirect
Storage (GDS), can eliminate the need to use the host memory
as a bounce buffer. Thereby, it becomes possible to transfer data
directly between the device memory and the file system. This
direct data path shortens latency by omitting the extra copy
and enables higher-bandwidth. To take full advantage of GDS
in existing applications, it is necessary to provide support with
existing I/O libraries, such as HDF5 and MPI-IO, which are
heavily used in applications.

In this paper, we describe our effort of integrating GDS with
HDFS5, the top I/O library at NERSC and at DOE leadership
computing facilities. We design and implement this integration
using a HDFS5 Virtual File Driver (VFD). The GDS VFD provides
a file system abstraction to the application that allows HDF5
applications to perform I/O without the need to move data
between CPUs and GPUs explicitly,. We compare performance
of the HDF5 GDS VFD with explicit data movement approaches
and demonstrate superior performance with the GDS method.

Index Terms—GPU 1/0, NVIDIA GPUDirect Storage (GDS),
HDF5 GDS Virtual File Driver (VFD)

I. INTRODUCTION

Complexity of next-generation systems is increasing rapidly
with heterogeneous processing units and deep memory and
storage hierarchies. Recent and upcoming high performance
computing (HPC) systems are relying on accelerators to
speed up parts of an large-scale simulations, visualizations
and machine learning applications. For instance, the main
computation for the National Energy Research Scientific Com-
puting Center’s (NERSC) next supercomputer, Perlmutter, will
be done on GPUs [1]. Similarly, exascale systems such as
Aurora and Frontier at the Department of Energy (DOE)
leadership computing facilities are also designed with GPUs.
In addition to heterogeneity in processing, memory and storage
hierarchies are also deepening with multiples levels of memory
and storage. This leads to various challenges in utilizing
on-device memory and data movement. As systems become
more heterogeneous and complex, it becomes increasingly
challenging to tune I/O performance for an application on
different platforms. I/O libraries, such as HDF5 [2] and MPI-

I0 [3], provide interfaces to implement optimizations for
different file systems and memory hierarchies [4].

By providing an I/O abstraction to applications, high-level
I/O libraries, such as HDF5 and netCDF [5], enable easier per-
formance tuning for each system [6], [7]. In particular, system
specific I/O optimizations can be reused across different appli-
cations with minimal effort. On top of this, I/O libraries can
support complex data structures with an easy-to-use interface.
HDFS5 is one of most widely used middleware libraries in HPC
applications [8]. HDFS provides storage abstraction layers
to enable per system I/O performance tuning. Applications
that use HDF5 can benefit from significant I/O performance
increase over the default I/O calls. In this paper, we describe
moving data between NVIDIA GPUs and storage transpar-
ently using HDF5 and the latest GPUDirect Storage (GDS)
technology [9]. I/O between GPUs and storage traditionally
include using CPU’s memory as an intermediate buffer and
transfers between the GPU and CPU memories. These not only
uses the extra buffer on CPUs, but also can be slow. NVIDIA
recently introduced GPUDirect Storage technology that allows
avoiding CPU memory as an intermediate buffer and uses
a direct path between GPU memory and storage. Our work
enables utilizing GDS directly from HDFS5. In this effort, we
have developed a prototype HDF5 Virtual File Driver (VFD)
for enabling applications using HDFS to utilize GDS without
the need to using the GDS API. In summary, the contributions
of this effort are:

e Design and implementation of HDF5 GDS VFD that
integrates GDS functionality in HDF5 for transparently
moving the data between GPUs and storage. We note that
the GDS library is still in early user testing phase, which
we use in this effort. Hence, this is one of the earliest
efforts to use the cutting-edge GDS technology.

o Performance characterization of write and read function-
alities for GPU compute applications

e Performance tuning of the HDF5 GDS VFD using mul-
tiple threads

The remainder of the paper is organized as follows. In
Section II, we provide brief background to NVIDIA’s GDS
technology, HDFS5 Virtual File Driver, and data movement in-
volved in GPU I/O. We present our design and implementation
of HDF5 GDS VFD in Section III and evaluate this prototype
implementation in IV. We present future efforts in Section V
and conclude our description of this effort in VL.
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Fig. 1. Read operation data flow from local storage to GPU (a) without
GPUDirect Storage and (b) with GPUDirect Storage

II. BACKGROUND AND MOTIVATION
A. GPU Compute: GPUDirect Storage

Data parallel applications can achieve an immense speed
up by utilizing GPUs. Its parallel architecture is optimized to
perform many operations at once; however, GPU-accelerated
applications still rely on CPUs to supply it with data and
to launch compute tasks as kernels on GPUs. This can be
inefficient due to multiple copies of the same data, in which
case the CPU, or host, memory is referred to as a “bounce
buffer”. In Fig. la., we show the dataflow of current GPU
accelerated applications. In a read operation (e.g., in machine
learning applications), data is first fetched from the file system
to CPU memory and then transferred to the GPU memory.
Applications using NVIDIA’s CUDA programming perform
these explicit data movements between CPU (host) and GPU
(device) using cudaMemcpy, where destination and source
can be specified with host and device. In some applications,
the CPU does perform some pre-processing of the data, but in
other cases staging the data in the host memory is unnecessary.

NVIDIA’s GPUDirect Storage enables a direct path between
local or remote file systems and GPU memory. This new
technology is similar to GPUDirect RDMA, which used the
GPU’s remote direct memory access feature to move data
directly between a network interface card and GPU memory.
In Fig. 1b., we show how the data can avoid being copied to
the CPU memory and sent directly between the GPU memory
and the file system.

GPUDirect Storage (GDS) currently supports Quadro and
Tesla GPUs newer than the Volta architecture. Moreover, a
GPUDirect Storage-enabled distributed file system or block
system needs to be present. In this paper, we also include
results experimental results on a local file system using ext 4
and a distributed file system using lustre. If those tech-
nologies are not available, cuFile (the kernel module driver
of the GDS technology) provides a compatibility mode which
uses an internal CPU bounce buffer to provide GPU I/O. In
some scenarios, the compatibility mode can perform better
than the cudaMemcpy method.

B. HDF5: Virtual File Driver

HDFS5 is a widely used I/O library that provides portability,
reliability, and performance. It used by many different types
of applications ranging from high performance computing
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Fig. 2. HDF5 Virtual File Driver Abstraction
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to mobile devices. As shown in Fig. 2, the HDF5 library
provides a rich set APIs for describing various data models
and organizing the data objects along with their descriptions
as metadata. HDFS contains various components to manage
memory, converting data types, storing data as chunks, I/O fil-
ters such as compression and de-compression, etc. The virtual
file driver (VFD) layer of HDF5 allows the implementation
of mappings between the HDF5 address space and storage
[10]. An application can specify which VFD to use through
an HDF5 API call or by setting an environment variable,
HDF5_DRIVER. By default, the SEC2 VFD is used to provide
POSIX file-system functions calls, such as read and write to
perform I/O to a single file. A commonly used VFD in HPC
applications is the MPI-IO VFD to allow parallel I/O using
MPI and MPI-IO [11]. There also exists the DIRECT VFD
which forces data to be written to the file system directly
without being copied into system kernel buffer by making
use of the O_DIRECT flag. To create a mapping for HDF5
applications to utilize GPUDirect Storage, we create a GDS
VED that utilizes cuFile to provide direct GPU I/O through
POSIX-like system calls (read and write to a single file).

III. DESIGN AND IMPLEMENTATION
A. Differences from SEC2 VFD

We implement HDF5 GDS VFD to interface with GPUDi-
rect Storage POSIX-like API function calls.

The self-describing format of HDF5 requires two types of
I/O requests: metadata and data. The metadata describes the
data stored in HDF5 dataset objects. The metadata have to be
added separately by the user from CPU memory. Even though
I/O calls to the GDS VFD will enable direct access to GPU
memory, the HDF5 metadata still needs to reside in CPU mem-
ory. To enable a direct path between the storage system and
GPU memory, it is necessary to disable OS buffering. This is
done by opening the file descriptor with O_DIRECT enabled.
Furthermore, in the HDF5 GDS VFD, we differentiate between
a CPU memory pointer and a GPU memory pointer using
the CUDA API. CPU memory operations are serviced using



native POSIX reads/write calls using pread and pwrite.
GPU memory operations are serviced using the GDS cuFile
calls for reading and writing the data, i.e., cuFileRead and
cuFileWrite, respectively.

B. GDS VFD Performance Tuning Options

The GDS VFD, based on HDF5’s DIRECT VFD, supports
sequential applications with a single process. The VFD can be
used by MPI applications, where each GPU can write its own
file. To improve concurrency of each process in performing I/O
operations, we have implemented support for multi-threading
and for selecting the size of I/O blocks. We provide these two
options as configurable options that an application can tune,
i.e., the number of CPU Threads participating in a single I/O
call and the size of each I/O call. Each of these knobs can be
dynamically changed during the runtime of the application.
By default, HDF5 GDS VFD will not spawn any threads and
will perform the full I/O request without chunking them into
smaller sizes. When the multi-threading option is selected,
threads are spawned to achieve concurrent I/O operations.

1) Multiple 1/O Threads: On parallel file systems, such as
Lustre, multiple storage servers and devices (Lustre Object
Storage Servers and Object Storage Targets) are available for
providing concurrent I/O operations. In order to saturate the
I/0 bandwidth of these parallel file systems, it is necessary to
use multiple CPU I/O threads accessing these storage targets
concurrently. In order to study the effects of using multiple
I/O threads, we implemented support for serving each I/O call
to HDF5 with multiple POSIX threads (pthreads) when using
the GDS VFD. A user can provide the number of threads to
be used by HDFS5.

2) Block Size: Parallel file systems also provide an option
for writing a block of data to be stored on a storage target. In
Lustre, each block is called a stripe and the size of it as ‘stripe
size’. Depending on the number of available storage targets,
users can select a stripe count to set the number of stripes on
Lustre. Making 1/O calls with a block size similar to the stripe
size, applications can achieve higher throughput [12]. In the
GDS VFD, we provide a configurable option to set the stripe
size and stripe count for writing to the Lustre file system.

I'V. EXPERIMENTAL EVALUATION AND RESULTS

To evaluate the performance of our HDF5 GDS VFD,
we designed a few micro-benchmarks, which use different
application techniques aimed at observing the cost of I/O
at different sizes. In these experiments, we compare the
performance of using default HDF5 SEC2 VFD, DIRECT
VED, and GDS VFD. In the default SEC2 option, data I/O
includes explicit data transfers between CPU and GPU using
the cudaMemcpy calls. We ran these tests on an NVIDIA
DGX-2 test-bed equipped with an NVMe-based local storage
and a Lustre File System. The local storage was configured in
RAID 0 with two NVMe drives with 1.8 GB/s theoretical max
sequential write each. The configured Lustre on this system
is using a progressive file layout. Note that these performance
results are preliminary, as the version of GPUDirect Storage

(GDS) library is still in beta testing stages, and some of the
performance metrics shown in this paper might vary in the full
release.

A. Performance on the Local File System

We characterized the performance of GPU-accelerated ap-
plications, which copy data between the file system and
GPU memory using cudaMemcpy (labeled ‘SEC2’ and
‘DIRECT’ in the figures), cudaMemcpyAsync (labeled
‘SEC2+PINNED’ and ‘DIRECT+PINNED’). As mentioned
earlier, without the GDS VFD, applications have to transfer
data explicitly from the GPU memory buffer to CPU memory
and write to file system using HS5Dwrite, which writes
using a POSIX write call. With pageable memory allocations,
the data transfers between the GPU and CPU can be slow
due to Operating System overhead of verifying that memory
pages have not been swapped. By pinning the CPU memory
allocations, the extra overhead can be avoided at the cost of
reducing the overall memory available for other applications
on CPUs. Each I/O request to HDFS5 is internally performed
without spawning extra threads or splitting I/O calls to smaller
block size; this is the default behavior for both the SEC2 VFD,
DIRECT VFD, and GPUDirect Storage VFD.

In Fig. 3, we demonstrate the performance benefit of using
GPUDirect Storage VFD. For write sizes greater than 256
MB using the GDS VFD achieves higher observed write rate
(the ratio of the size of data written to the wall-clock time)
when compared to the total cost of writing data from the GPU
buffer to the local file system. In this experiment, we perform
a sequential write operation varying from 64 MB to 2 GB. The
observed write rate using pinned memory with DIRECT VFD
is higher than the other cases for lower write sizes. Since this
is a sequential write benchmark, the extra buffering the OS
does when not enabling O_DIRECT adds some extra latency
for the SEC2 VFD case. Also for lower I/O sizes, the extra
cost of querying CUDA for the memory buffer location inside
the GDS VFD reduces the observed write rate. Nonetheless,
for the larger write sizes by utilizing GPUDirect Storage we
were able to achieve almost the theoretical maximum write
speeds of our local file system.

In Fig. 4, we compare the performance of using the GDS
VED when performing read operations. With a smaller read
size, the GDS VFD does not outperform using the SEC2 VFD
with Read Ahead enabled; our GDS VFD outperforms the
SEC2 VFD for read sizes greater than 128 MB. If O_DIRECT
is not enabled, the OS will try to ‘Read Ahead’ by prefetching
and caching data; this offers a noticeable performance boost
for sequential reads. The read rates of SEC2 with Read Ahead
disabled, using the fadvise system call, performs similarly
to DIRECT VFD. Although, it is possible to support Read
Ahead with GDS, it is not yet supported by the cuFile driver.
Thus, using SEC2 VFD with Read Ahead left enabled would
yield higher write rates than our HDF5 GDS VFD for read
sizes less than 128 MB.
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Fig. 3. Write performance from a GPU to a node-local NVMe storage with
varying write sizes
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B. Performance on Lustre with multiple threads

When using a network file system, such as Lustre [13] or
WekaFS [14], better performance can be achieved by using
multiple CPU I/O threads and splitting the I/O requests in
smaller block sizes. We offer these parameters to be tuned with
the GDS VFD. The following results compare the observed
read and write rates with the GDS VFD and the default HDF5
SEC2 VFD which does not spawn any threads or split the I/O
requests into smaller blocks. This experiment uses a single
GPU and writes to a Lustre file system.

In Fig. 5, we show the write rate to Lustre with varying
number of CPU threads and varying block size. The write rate
of the SEC2 VFD is overlaid on each plot for easy comparison;
however, the SEC2 VFD does not split the I/O requests as
noted earlier. We show that with more I/O threads, the overall
throughput increases substantially for larger write sizes. We
only tested with block sizes from 1 MB to 8 MB; we observe
that varying the block size does not affect the write rate. In
Fig. 6, we compare the read rates between the SEC2 VFD
(with Read Ahead enabled) and the GDS VFD. In both cases,

we noticed far smaller throughput than the write rates.
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Fig. 5. Write rates with multi-threaded GDS VFD with varying 1/O sizes

C. Performance with Multiple GPUs

The benefit of the GDS VFD with a distributed file sys-
tem is much more apparent when using multiple GPUs. We
demonstrate that by increasing the number of GPUs used, we
can achieve a much higher throughput to the file system. One
can use multiple GPUs with our HDF5 GDS VFD by utilizing
MPI and letting each MPI rank write to a separate file. In these
two experiments, we make each MPI rank operate on 2 GB
data size with 4 MB block size. The GDS VFD is configured
to spawn 4 CPU threads to service each I/O request.

In Fig. 7, we show more than 2x speed up when using the
GDS VFD versus the SEC2 VFD. Moreover, the aggregate
write rate scales linearly as we add more GPUs to participate
in the I/O requests. In Fig. 8, we also show an increase in
the aggregate read rate as we add more GPUs with our GDS
VFD; however, the SEC2 VFD (with Read Ahead enabled)
performs better in all cases. We suspect that Lustre caching
to be the primary reason for this discrepancy, which needs
further profiling to confirm.

V. FUTURE WORK

Per System Tuning Although we offer tuning parameters for
the GDS VFD, such as the number of I/O threads and 1I/O
block size, we plan on including the support to automatically
query the system for optimal configurations. For example,
the I/O block size can be set based on the stripe size for a
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distributed file system. Similarly, the number of I/O threads
can avoid oversubscribing if there are not enough CPU cores.
Asynchronous I/0: One way to achieve higher throughput
after reaching the bandwidth limitations of a system is to
overlap data transfers with computation. It is possible to
achieve asynchronous I/O through the current HDF5 asyn-
chronous Virtual Object Layer (VOL) connector [15]. B
utilizing CUDA Streams, it becomes possible to overlap /O
calls made with GPUDirect Storage with computation. We
could extend the functionality of HDF5 ASYNC VOL to
support GDS asynchronous operations.
Multi-threaded POSIX I/0: To make a better comparison of
using multiple threads to service a GDS I/O request, HDF5’s
default POSIX I/O could also use multiple threads. Multi-
threaded I/O offer the possibility of achieving higher through-
put on distributed file system. We are currently designing
multi-threaded SEC2 VFD, which we will compare in future.
Parallel I/O: Design work is in progress to extend HDF5
to perform parallel I/O directly from GPUs. We are profiling
performance with multiple prototypes. These include using
background threads for transferring the data between CPU
and GPU and performing I/O asynchronously using MPI-10
enabled with NVIDIA’s GDS, etc.

VI. CONCLUSIONS

In this paper, we described and demonstrated how appli-
cations can benefit from utilizing GPUDirect Storage VFD
with HDF5. We compared the performance of GDS VFD
with the default HDF5 SEC2 VFD for GPU accelerated
applications. We demonstrated about 2x speed up for write
rate and read rates with GPU I/O to and from local storage.
For distributed file systems, we demonstrated around 2x speed
up for the write rate. The HDF5 GDS VFD development is
based on a cutting-edge technology and various follow up
R&D efforts are in progress building on this initial successful
implementation and performance improvements.
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