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Abstract—HPC storage software developers rely on bench-
marks as reference points for performance evaluation. Low-level
synthetic microbenchmarks are particularly valuable for isolating
performance bottlenecks in complex systems and identifying
optimization opportunities.

The use of low-level microbenchmarks also entails risk, how-
ever, especially if the benchmark behavior does not reflect the
nuances of production data services or applications. In those
cases, microbenchmark measurements can lead to unrealistic
expectations or misdiagnosis of performance problems. Neither
benchmark creators nor software developers are necessarily at
fault in this scenario, however. The underlying problem is more
often a subtle disconnect between the objective of the benchmark
and the objective of the developer.

In this paper we investigate examples of discrepancies between
microbenchmark behavior and software developer expectations.
Our goal is to draw attention to these pitfalls and initiate a
discussion within the community about how to improve the state
of the practice in performance engineering for HPC data services.

I. INTRODUCTION AND BACKGROUND

Benchmarks are a crucial tool for understanding the capabil-
ities of hardware and software resources employed in storage
systems. In the ideal case, benchmarks are perfect proxies
for application workloads and can accurately characterize
end-to-end storage system performance. As storage systems
become more complex, however, it becomes necessary to
modularize storage software construction [1], [2]. HPC data
services are also increasingly tailored to more specific use
cases such as highly-selective scientific queries [3] or scientific
machine learning [4]. These factors make it difficult to to fully
understand underlying performance issues at scale.

Developers often attempt to isolate the performance of
storage subsystems [5]–[7] to make performance engineering
more tractable. Microbenchmarks are a natural choice to act as
reference points for the performance of individual subsystems,
but many popular microbenchmarks are designed to extract
maximum hardware performance in their default configuration.
In doing so, they employ techniques that are difficult to apply
in storage use cases, omit operating system or user-space
factors, or simply measure workloads that do not correlate well
with common usage patterns. The discrepancy between the
hardware access patterns in popular benchmarks and hardware
access patterns in HPC data services can be surprisingly
difficult to recognize without a deep understanding of low-
level system architecture.

Performance engineering for storage systems development
is an inherently detail-oriented task, but even with decades
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Fig. 1: HPC storage systems have many constituent hardware
components, as illustrated in this conceptual diagram. Auxil-
iary resources such as archival and remote transfer systems
are omitted for clarity.

of storage system performance tuning experience, the au-
thors were surprised by the low-level behavior of popular
microbenchmarks. In this work we highlight common incorrect
assumptions about several popular microbenchmarks, identify
how the microbenchmark measurements differ from expecta-
tions, and initiate a discussion about how to use microbench-
marks effectively for performance engineering.

The HPC storage community is well-positioned to provide
leadership in storage system component performance bench-
marking. Within many of our systems, performance is the
primary concern – ranking ahead of conventional distributed
systems concerns such as consistency, availability, or partition
tolerance. This paper is born out of our initial frustration in
leveraging roofline models [8] for I/O performance analysis,
and we present this data to help practitioners avoid tripping
over the same obstacles. The remainder of this section sum-
marizes background and provides additional context for our
study. Section II explores empirical case studies on two leading
HPC platforms. Section III summarizes our findings and
discusses their implications for HPC storage researchers and
practitioners engaged in performance engineering activities.

A. HPC storage systems

HPC storage systems consist of compute nodes that is-
sue storage requests, a network fabric that transfers data,
service nodes that aggregate devices, and individual devices
that store data. A conceptual diagram is shown in Figure 1.



Application-level performance measurements in this environ-
ment inevitably lead to a variety of follow-up questions: Did
the perceived application performance match platform expec-
tations? Which constituent component was the bottleneck?
Can performance be improved? Answering these questions
requires reference points (empirical measurements, models, or
subject matter experience) to aid in contextualizing and inter-
preting performance. The dashed boxes in Figure 1 highlight
key components that can be benchmarked, in aggregate or in
isolation, to help provide these reference points.

B. Benchmarking techniques

A vast array of I/O benchmarks have been created for
various purposes including stress testing, platform comparison,
performance tuning, and advertising. Synthetic benchmarks
emphasize generality and flexibility, while application proxy
and trace-based benchmarks emphasize workload reproduction
accuracy. Either type of benchmark may be appropriate during
performance engineering whether performing roofline model
analysis or some other type of analysis.

We focus on synthetic benchmarks in this study because
they are the most straightforward type of benchmark to use
for component-level measurements (i.e., microbenchmarking).
Traces and proxies are difficult to obtain at the component
level, especially on storage systems that support a diverse,
multi-tenant portfolio of applications at an HPC facility.

II. CASE STUDIES

We present network, CPU, and storage case studies that fo-
cus on illustrative examples rather than exhaustive evaluation.
Version information for all relevant benchmarks and support
libraries can be found in the appendix.

We used two platforms for these experiments: the Summit
supercomputer1 operated by the Oak Ridge Leadership Com-
puting Facility and the Theta supercomputer2 operated by the
Argonne Leadership Computing Facility. Summit consists of
4,608 compute nodes connected via EDR InfiniBand. Each
Summit node contains 2 IBM Power9 CPUs, 6 NVidia Volta
GPUs, 512 GiB of RAM, and a locally attached 1.6 TiB NVMe
drive. Theta consists of 4,392 compute nodes connected by an
Aries dragonfly network. Each node contains 64 Intel Knights
Landing compute cores, 192 GiB of RAM, and a locally
attached 128 GiB NVMe drive.

Variability is an important factor in storage performance that
can also lead to misinterpretation if not treated properly [9],
[10]. We recorded 50 sustained performance measurement
samples for each benchmark configuration in an attempt
to account for this. All 50 samples were collected on the
same nodes while round-robin alternating between benchmark
configurations. Violin plots are used to illustrate probability
distribution, while horizontal lines are used to indicate mini-
mum, median, and maximum sample values.

1https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
2https://www.alcf.anl.gov/support-center/theta
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Fig. 2: Illustration of the osu_bw microbenchmark commu-
nication protocol: 64 concurrent asynchronous MPI messages
are issued, each process blocks until all 64 are complete, an
acknowledgement is sent in the opposite direction, and the
sequence is repeated. All 64 concurrent messages are sent from
(or received into) the same memory offset for the duration of
the benchmark.

A. Network: memory access case study

Network performance is a crucial factor in distributed data
service performance and is therefore a frequent benchmarking
target for HPC data service developers. A variety of methods
exist for measuring network performance, but MPI implemen-
tations and their benchmarks are a natural choice on HPC
systems. MPI is portable, widely available, and optimized
for asynchronous operation, efficient user-space access, and
low latency. However, MPI libraries and HPC data services
operate under different assumptions with respect to workloads,
failure handling, communication symmetry, operating system
interaction, and other factors. Memory access strategy is a
notable example: does the benchmark repeatedly transfer “hot”
memory, or does it iterate over a large memory region? The
former obtains higher performance because it minimizes the
overhead of memory registration and address translation. The
latter is more representative of a large data service transfer,
and the performance discrepancy between the two can be
significant.

An example of hot memory reuse in an MPI benchmark
is illustrated in Figure 2 which shows the communication
pattern employed by the osu_bw microbenchmark from the
OSU benchmark suite3. It exhibits two behaviors that differ
from common practice in HPC data services. The first is that
concurrency is achieved in 64-operation bursts rather than
continuously issuing new operations as old ones complete.
The second is that memory regions are reused repeatedly. All
sends originate from a single memory offset on rank 0 and
all receives arrive at a single memory offset on rank 1. Those
memory offsets are also used in subsequent loop iterations.

The impact of this communication pattern is shown in
Figure 3. The baseline measurement shows the performance of
the standard osu_bw communication pattern as illustrated in
Figure 2. The “patched” measurement shows the performance

3http://mvapich.cse.ohio-state.edu/benchmarks/

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.alcf.anl.gov/support-center/theta
http://mvapich.cse.ohio-state.edu/benchmarks/
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Fig. 3: Point-to-point internode MPI bandwidth reported by
osu_bw with a 32 KiB message size on Summit.

of osu_bw with the following modification: each process
allocates a 1 GiB communication buffer and then sends
from or receives into regions in that buffer in a round-robin
fashion, incrementing the offset by X bytes for each message.
The modified benchmark exhibits a nearly 40% performance
penalty, even though the two configurations are nominally
issuing equivalent network operations. A user-space HPC data
service would require careful optimization (for example, by
copying data through reusable, aligned transfer buffers) to
approach the idealized messaging performance reported by the
baseline MPI benchmark configuration.

B. Network: completion method case study

Network latency is also an important element in distributed
data service performance. It places a lower bound on response
time, which is crucial for metadata operations, sequential
I/O operations, and interactive use. One of the most influ-
ential factors in network latency is not technically a network
phenomenon at all: it is the time required for a process to
receive notification of network message completion. The high-
est performance method for retrieving network notifications
in user space is for user processes to continuously poll the
network device. This technique avoids significant interrupt,
signaling, and context switching overheads, and is thus the
favored completion method in MPI libraries4 and network
benchmarks. Continuous polling consumes considerable host
CPU resources, however.

Continuous network polling is also desirable for data ser-
vices in some deployment scenarios, especially if service dae-
mons can be isolated on dedicated nodes. It is less appropriate,
however, if service daemons are colocated with other tasks or
deployed in a power-constrained environment. Data services
should gracefully idle when quiescent in these cases. As in
the hot memory use case, this distinction can have a profound
impact on network performance.

4Note that MPI implementations may elect to busy poll for progress
even within blocking functions such as MPI Recv() and MPI Wait() without
violating the MPI specification.
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Fig. 4: Point-to-point internode round-trip latency as reported
by fi_msg_pingpong with a 100-byte message size on
Summit. The default mode uses busy polling, while the fd
blocking mode uses the -c fd command line option.

We use the fi_msg_pingpong benchmark from the lib-
fabric fabtests to investigate this behavior. It measures round-
trip latency at the libfabric API level and offers command line
options to vary the completion method, as shown in Figure 4.
In the default configuration, the benchmark busy polls for
network completions. In the “fd” configuration, the bench-
mark blocks on file descriptors that are signaled by libfabric
when network events are available. The latter method is also
appealing for data services because it facilitates multiplexing
events from multiple resources in a shared event loop (e.g.,
file and network I/O). This configuration more than triples
the round-trip latency for libfabric, however, highlighting a
case in which the default configuration of a microbenchmark
does not necessarily measure the the implementation approach
employed in an HPC data service. Annotations in the figure
also show the median CPU utilization for each configuration.

C. CPU: core usage case study

Although network and storage devices are the most obvious
factors in distributed storage service performance, the host
CPU also plays a critical role because of its responsibility
for coordinating devices and relaying data between them.
Effective CPU usage is especially important for multithreaded
data services executing on nodes with a large number of cores.

This case study highlights two specific issues that can ob-
fuscate the impact of CPU performance in HPC data services.
The first is that compute node resource managers often employ
default policies that are optimized for application program-
ming models rather that HPC data services. The second is that
network and storage abstractions often do not clearly advertise
their CPU requirements.

Figure 5 illustrates the confluence of both factors in a
measurement of network performance on Theta. The baseline
measurement shows point-to-point libfabric bandwidth, as
measured by the fi_msg_bw benchmark from the fabtests
collection, for a 32 KiB message size. The fi_msg_bw
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Fig. 5: Point-to-point internode libfabric bandwidth reported
by fi_msg_bw with a 32 KiB message size on Theta. The
“binding disabled” version executes the same benchmark with
--cc none added to launcher command line.

benchmark is single threaded and would appear to place
straightforward demands on the host CPU. However, the
GNI libfabric provider spawns an internal progress thread
by default; and as established in Section II-B, the fabtests
benchmarks use CPU-intensive continuous polling by default.
Taken together, this means that the benchmark needs two
CPU cores to maximize bandwidth. Unfortunately, the aprun
executable launcher binds processes to individual cores by
default on this platform in a bid to improve pure MPI perfor-
mance. When these factors are combined, the benchmark does
not have sufficient CPU resources to maximize bandwidth.
The “binding-disabled” configuration in Figure 5 adds --cc
none command line argument to the aprun launcher to disable
explicit core binding, thereby improving median benchmark
performance by 22.5%.

D. Storage: caching case study

Caching is the most influential factor in storage device
performance measurement. Cache settings must be chosen and
documented with care when contrasting microbenchmark and
service performance not only because of their performance im-
pact but also because of their impact on durability, coherence,
and fault tolerance. The most straightforward way to control
file system cache behavior is by using optional flags to the
open() system call. For example, the O_DIRECT flag can
be used to bypass the kernel buffer cache5. The O_SYNC flag
can be used to enforce that each individual write be made
durable immediately. Other flags, as well as function calls
such as fdatasync() and fadvise(), can also be used
to control caching behavior.

These interplay of these cache settings can have subtle
performance implications. For example, consider the scenario

5O DIRECT is a Linux-specific feature that is not defined by the POSIX
specification. Its interpretation is therefore inconsistent across file systems,
and it may impose additional alignment constraints.
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Fig. 6: Write bandwidth reported by fio with 16 threads and
a 32 KiB access size on a Summit NVMe drive

shown in Figure 6 where the experiment is intended to
determine whether the O DIRECT flag improves performance
or not. Perceived write performance is highest with the default
flags because the kernel buffer cache prevents the data from
reaching the target storage device. This configuration measures
system call and memory copy performance more so than
storage device performance. The addition of the O DIRECT
flag bypasses the kernel buffer cache and forces each write to
reach the device. However, it does not influence the storage
device itself, which likely still employs an embedded write-
back cache independent of the operating system. In contrast,
the addition of the O SYNC flag does not disable the kernel
buffer cache, but it does immediately flush each write from
both the kernel and device cache. This setting effectively
turns the write-back storage cache into a write-through storage
cache. O SYNC and O DIRECT can also be combined as in
the last configuration to both disable the kernel cache and flush
each write at the device level. Annotations in Figure 6 indicate
how opposite conclusions are reached about the efficacy of
O DIRECT depending on the developer’s cache settings.

E. Storage: file allocation case study

The O DIRECT — O SYNC results from Figure 6 in the
previous section imply that a data service should be able to
write 32 KiB entries to a durable log (e.g., for fault tolerance
purposes) at a rate of 1.5 GiB/s. This interpretation overlooks
secondary overheads, however, such as block allocation and
size tracking.

We reconfigured fio to emulate a concurrent log update
workload in order to investigate this phenomenon. In this case
we use libaio6 to minimize threading overhead while still
performing 16-way concurrent writes (using the fio iodepth
option) with O DIRECT and O SYNC. In this configuration,
fio writes to a single shared file (e.g., a hypothetical data
service log) rather than 16 separate files. The results are shown
in Figure 7.

6The Linux kernel on Summit does not support io-uring at this time.
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Fig. 7: Write bandwidth reported by fio with libaio, iodepth
16, and a 32 KiB access size on a Summit NVMe drive

The baseline measurement achieves a median of 530 MiB/s,
which is only a third of that reported in the preceding section.
This illustrates that concurrent updates to a shared file are not
necessarily as efficient as concurrent updates to distinct files,
even when taking precautions to minimize system call and
buffer cache overhead.

The strace system call tracing tool also reveals unan-
ticipated behavior from the fio benchmark itself: it calls
fallocate() to preallocate the file prior to the timed
write portion of the benchmark. This serves to isolate write
performance from file allocation performance. In doing so,
it likely produces a better representation of the pure write
performance of the device, but it does not reflect the likely
behavior of an HPC data service.

The file allocation step can be disabled via command line
options; doing so produces the “no fallocate” measurements in
Figure 7, which are an additional 200 MiB/s slower than the
baseline. This is also the performance that a data service would
achieve if it did not preallocate the log file. The discrepancy is
caused by inefficiency in concurrent appends to shared files,
which in turn is due to contention on block allocation and
size updates. These are technically file system factors rather
than storage device factors, but they impact practical storage
service implementations nonetheless.

The impact of file allocation on write performance also
hints at another potential benchmarking pitfall: is the file
created from scratch during the benchmark or overwritten?
The two preceding examples used a file size of 64 GiB
and the “runtime” parameter to fio to measure sustained
write performance for 10 seconds. This file size and time
duration are sufficient to obtain a stable sustained write
performance result. The third example, labeled “overwrite” in
Figure 7, reduces file size to 1 GiB (e.g., to limit storage
consumption by the benchmark): a configuration that would
normally cause the benchmark to complete too quickly to
produce stable measurements. However, this configuration has
also been augmented with the time_based=1 parameter,

which instructs fio to iterate until the runtime has elapsed
regardless of file size. This would appear to achieve the best
of both worlds (sustained bandwidth measurement with low
storage consumption), but the unintended consequence is that
fio will continually wrap around at EOF and overwrite
the file from the beginning without unlinking or otherwise
reallocating the file. This configuration therefore not only
preallocates the file as in the baseline measurement but in
fact overwrites it repeatedly, thereby benefiting from additional
caching effects on subsequent passes over the file and inflating
the performance to a median of 824 MiB/s.

The violin plots in Figure 7 also reveal that shared file
writes are more prone to bimodal performance than are the
independent file writes that were measured in Section II-D.
Most samples are near the peak (and median) performance, but
some samples are significantly lower in each configuration.

III. DISCUSSION AND CONCLUSIONS

We investigated several common microbenchmarks in this
study and uncovered implementation details that may surprise
even experienced storage system developers. These surprises
are a significant obstacle to successful performance engineer-
ing, especially when employing techniques such as roofline
modeling. We believe roofline models offer great promise
in improving the HPC storage community’s understanding
of storage system performance, but rigorous application of
roofline modeling requires that we establish valid theoretical
and empirical ceilings within the model. In attempting to apply
roofline models to our own software, we realized that while
existing microbenchmarks often do an excellent job approach-
ing the best-case performance of the underlying hardware,
the techniques used to achieve those performance levels are
often inapplicable to the system usage requirements of storage
system software.

Our study identified several potential pitfalls in the interpre-
tation of widely used benchmarks for performance engineering
in HPC data services. These pitfalls result from benchmark
creators and service developers starting from different goals or
different assumptions: Should operating system or user-space
access be included in measurements? What configuration
parameters are most relevant? What workload should be used?

No universal solution exists for establishing valid roofline
model ceilings, but in order to lead the adoption of roofline
models of performance analysis for data services we strongly
encourage the HPC storage community to consider strategies
to improve the existing state of the practice in I/O microbench-
marking. For example, microbenchmark authors could clearly
document default benchmark settings (e.g., fio preallocation
and OSU benchmark buffer reuse), HPC storage developers
could clearly motivate the rationale for choosing particular
benchmark configurations (e.g., why is a specific cache con-
figuration relevant), and the community at large could pursue
standardization of microbenchmarks for important motifs that
reflect HPC storage service modalities. Initiatives such as
these have the potential to greatly improve productivity in
performance engineering for HPC data services.
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APPENDIX: ARTIFACT DESCRIPTION/ARTIFACT
EVALUATION

SUMMARY OF THE EXPERIMENTS REPORTED

We executed a collection of component microbenchmarks
(fio, osu bw, fi msg pingpong, and fi msg bw) on the Sum-
mit supercomputer at the OLCF and the Theta supercomputer
at the ALCF as described in the paper.

ARTIFACT AVAILABILITY

a) Software Artifact Availability:: There are no author-
created software artifacts.

b) Hardware Artifact Availability:: There are no author-
created hardware artifacts.

c) Data Artifact Availability: : All author-created data
artifacts are maintained in a public repository under an OSI-
approved license.

d) Proprietary Artifacts:: None of the associated arti-
facts, author-created or otherwise, are proprietary.

e) Author-Created or Modified Artifacts::

Persistent ID:
https://doi.org/10.5281/zenodo.4000350↪→

Artifact name: data artifact for "Keeping
It Real: Why HPC Data Services Don't
Achieve I/O Microbenchmark
Performance"

↪→

↪→

↪→

BASELINE EXPERIMENTAL SETUP, AND MODIFICATIONS
MADE FOR THE PAPER

f) Relevant hardware details:: We used two platforms for
these experiments: the Summit supercomputer operated by the
Oak Ridge Leadership Computing Facility and the Theta su-
percomputer operated by the Argonne Leadership Computing
Facility. Summit consists of 4,608 compute nodes connected
via EDR InfiniBand. Each Summit node contains 2 IBM
Power9 CPUs, 6 NVidia Volta GPUs, 512 GiB of RAM, and a
locally attached 1.6 TiB NVMe drive. Theta consists of 4,392
compute nodes connected by an Aries dragonfly network. Each
node contains 64 Intel Knights Landing compute cores, 192
GiB of RAM, and a locally attached 128 GiB NVMe drive.

g) Compilers and versions:: XL 16.1.1-5, GCC 9.1.0,
GCC 9.3.0

h) Applications and versions:: fabtests 1.10.1, osu-
micro-benchmarks 5.6.3, fio 3.20

i) Libraries and versions:: libfabric 1.10.1, spectrum-
mpi 10.3.1.2-20200121, cray-mpich 7.7.14

j) URL to output from scripts that gathers execution
environment information:
https://anl.box.com/s/74z3ki88o4j2t756yra c

098rji02zm2mf↪→

https://doi.org/10.1145/3064176.3064208
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap119.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap119.pdf
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