Scalable Data Processing at Network transfer rates with nCorium Compute in Memory Modules

Suresh Devalapalli, Brett Neuman, Arvindh Lalam
OSS Layer Bottlenecks in HPC Facilities

- 10,000's servers

- Storage Layer

- OSS

- Compute Layer

- 10s of Peta Bytes of data moved in and out of Storage layer

- Challenges:
 1. Data processing on CPU unable to keep up with increase in network and storage speeds
 2. I/O throughput per node is limited
nCorium Compute in Memory Module

- DIMM form-factor
- Reconfigurable compute cores on the DIMM
- Off-load functions via libraries:
 - Compression
 - Erasure
 - Encryption
 - Video Transcoding
 - ….etc
- Data Stream based processing
nCIMMs + nC-Grid = Scalable nCorium-OSS

- nCIMM to off-load data processing
- nC-Grid to open wider I/O
- Scalable Architecture:
 - Number of nCIMMs
 - Functions to support
Performance of Gen-1 nCorium OSS: Q’1 19

5x for RDMA

3.4x for RDMA + Erasure

Performance compared with Intel Gold CPU based system

Gen-1 released in Q1’19
Performance of Gen-2 nCorium OSS

- Improved reconfigurable cores
- More off-load functionality
- Higher Power efficiency

Gen-2 now available

<table>
<thead>
<tr>
<th></th>
<th>RDMA</th>
<th>RDMA+ENC</th>
<th>RDMA+ENC+SSD</th>
<th>RDMA+COMP+ENC+SSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>11</td>
<td>9</td>
<td>7.2</td>
<td>5</td>
</tr>
<tr>
<td>nCorium G1</td>
<td>50</td>
<td>34.3</td>
<td>26.3</td>
<td>23.5</td>
</tr>
<tr>
<td>nCorium G2</td>
<td>76.5</td>
<td>67.5</td>
<td>52</td>
<td>49.4</td>
</tr>
</tbody>
</table>

Numbers extrapolated from initial data

Ref. Platform vs nCorium G1 and nCorium G2

~10x faster
Ongoing Work

• Parallel file system integration
 • Lustre
 • BeeGFS

• Other Applications
 ▪ Key-Value Storage
 ▪ Video Transcoding
 ▪ Inferencing
 ▪ Graph Analytics
 ▪ Cyber Security
 ▪ Content Distribution
Demos / Exhibits

StarLight: Booth 993

EchoStreams: Booth 1490

Thank you!