
Profiling Composable HPC Data Services 
WIP@PDSW, 2019

Philip H. Carns
Robert Ross

Shane Snyder
Argonne National Laboratory

Srinivasan Ramesh
Allen D. Malony

University of Oregon



Data Services: Managing Heterogeneity and Change

● Difficult to build custom data services 
efficiently:

○ Lots of moving parts
○ Need to dynamically adapt to 

changing application patterns 
● Debugging performance problems is hard:

○ Numerous attempts at debugging 
microservices: Dapper@Google, 
Stardust, X-Trace, etc

○ We take inspiration from these

NVM

ARCHIVE

MEMORY

SSD

“KOVE” 
DEVICES

DISKS

Simulation

Machine 
Learning

Data 
Analysis

Storage: 
Heterogeneous, 
Multi-layered

Applications: 
Diverse Workflows, 
Data-driven



Mochi: Composable Data Services
● Mochi data services are built by 

composing microservices:
○ RPC for control
○ RDMA for data movement

● Mochi’s building blocks:
○ Mercury, Argobots, Margo

● Performance Analysis in Mochi: 
○ Build performance analysis 

capability directly into Mochi:
■ Available out-of-the-box!

Mobject service: An object store

*Image credits: Matthieu Dorier, Argonne National Laboratory



Mochi: Performance Analysis

● We track the time spent in various call 
paths within the service:

○ A->C->D is a different call path from 
B->C->D

● Key idea: Each microservice stores and 
forwards RPC call path ancestry

● Time, call count, resource-level usage 
statistics updated at four instrumentation 
points: Client send/receive, Server 
send/receive

● What performance questions do we hope 
to answer?

Call path profiling:
Mobject service: Call path profiling



Call Path Profiling: Detecting Load Imbalance
● Performance question: For a given call path, what is the distribution of call path times and 

counts in origin/target entities?

Overloaded server: Large variation in response time Multi-threaded server: Better read perf. and response time

15s

7s

4.8s

3.4sread bw: 2155 MiB/s read bw: 5700 MiB/s

mobject_read_op: Raw distribution of call times across all origin (client) entities



Tracing: Detecting Resource-Level Inefficiencies
● Margo servers spawn a new Argobot User-Level-Task (ULT) for every incoming RPC request

○ Size of pool of tasks waiting to run is a measure of load and responsiveness of system
● We perform request tracing at the 4 instrumentation points previously described:

○ We collect Argobot pool size info, memory usage along request path
○ This enables correlation of call path behaviour with resource usage on node

Overloaded server: Pending tasks are 
stacking up 

Multi-threaded server: Reduction in number 
of pending tasks

mobject_read_op: Max number of pending Argobot ULT’s along request path

20 pending tasks
7 pending tasks


