Profiling Composable HPC Data Services
WIP@PDSW, 2019

Srinivasan Ramesh Philip H. Carns
Allen D. Malony Robert Ross
Shane Snyder
University of Oregon Argonne National Laboratory

O Argon neé

NATIONAL LABORATORY

Data Services: Managing Heterogeneity and Change

Storage: Applications:
HeterogeneOUS, E Diverse Workﬂows’ (] D|ﬁ|CUIt to bU|Id custom data SerVices
Multi-layered .| Data-driven efficiently:

; o Lots of moving parts
@ o Need to dynamically adapt to
| changing application patterns
e Debugging performance problems is hard:
o Numerous attempts at debugging
microservices: Dapper@Google,

Stardust, X-Trace, etc

o We take inspiration from these

Mochi: Composable Data Services

Mobject service: An object store e Mochi data services are built by

composing microservices:

o RPC for control

o RDMA for data movement
e Mochi’s building blocks:

o Mercury, Argobots, Margo
e Performance Analysis in Mochi:

o Build performance analysis

capability directly into Mochi:
m Available out-of-the-box!

*Image credits: Matthieu Dorier, Argonne National Laboratory

Mochi: Performance Analysis

Call path profiling:

Mobiject service: Call path profiling

Cumulative Time

Sort breadcrumbs by cumulative time on the origin
Display top-5 breadcrumbs in descending order of cumulative time on origin and target

500

400

Seconds
8
3

200

Origin
Target

mobject_read_op mobject_read_op mobject_read_op mobject_write_op
-> sdskv_list_key

ist_keyvals_rpc -> sdskv_list_keys_rpc
Breadcrumb ID

We track the time spent in various call

paths within the service:
o A->C->D is a different call path from
B->C->D

Key idea: Each microservice stores and
forwards RPC call path ancestry

Time, call count, resource-level usage
statistics updated at four instrumentation
points: Client send/receive, Server
send/receive

What performance questions do we hope
to answer?

Call Path Profiling: Detecting Load Imbalance

e Performance question: For a given call path, what is the distribution of call path times and

counts in origin/target entities?
mobject_read_op: Raw distribution of call times across all origin (client) entities

Raw Cumulative Time: Origin

Raw Cumulative Time: Origin
15s
Display raw distribution of cumulative times across all origin instances for the breadcrumb with highest cumulative time 488
a
34s

3
3
§
]
w

2

¢ Breadcrumb ID: mobject_read_op
Breadcrumb ID: mobject_read_op
Multi-threaded server: Better read perf. and response time

Overloaded server: Large variation in response time

o2
N

o
810

a
]

0

Tracing: Detecting Resource-Level Inefficiencies

O

O

O

Margo servers spawn a new Argobot User-Level-Task (ULT) for every incoming RPC request

Size of pool of tasks waiting to run is a measure of load and responsiveness of system
We perform request tracing at the 4 instrumentation points previously described:

We collect Argobot pool size info, memory usage along request path
This enables correlation of call path behaviour with resource usage on node

mobject_read_op: Max number of pending Argobot ULT’s along request path

20 pending tasks

[=3

N
M\ g.m*‘m;@i
MY ::2, AR ELE

* !

hm“ ii‘&“%ii ‘%*g g*kfﬁi

',ua

ge

0.0

2.5 5.0 1.5

10.0 125 15.0 175

timestamp

Overloaded server: Pending tasks are

stacking up

20.0

7 pending tasks

Jaslt® -
el I
L]
Jeelic,
T T o
el e
21l
3

ML
Ll
.ll' s
otll
G

sel?

e
"-
LB e
.
. l!!.
.o e e
.gite
L (i
"l
(4 HH
° 28
PELE R4 B8

(§ &

5 .
Lrafir
e e N0 We

o

i

oo 8838

sine
=%

setice.

!

3]

w

1 2 4 5 6 7 8
timestamp

Multi-threaded server: Reduction in number
of pending tasks

