
Profiling Composable HPC Data Services
Srinivasan Ramesh∗ Philip Carns† Robert Ross† Shane Snyder† Allen Malony∗

∗University of Oregon {sramesh, malony}@cs.uoregon.edu
†Argonne National Laboratory {carns, rross, ssnyder}@mcs.anl.gov

I. ABSTRACT

Storage hardware on today’s HPC platforms is multi-
layered, where each layer involves different technologies,
performance characteristics, cost, latency, and bandwidth con-
straints. This heterogeneity, coupled with increasing on-node
parallelism, complicates the task of managing and optimizing
I/O performance. The traditional MPI-based parallelism is
increasingly supplemented by large-scale task parallelism in-
volving intensive data-analysis and machine learning routines.
It is natural to expect the I/O needs of such applications to be
different from traditional HPC simulation workloads.

The Mochi project [1] is an attempt to structure and catalyze
the development of customized HPC data services. The key
software design paradigm lies in building microservices and
composing them to meet applications’ needs. The Mochi
project focuses on the development of microservice building
blocks and composing them via Mercury [2], an RPC frame-
work that is optimized for RDMA-based HPC systems. These
microservices rely on Argobots [3] for managing concurrency
within a node.

A. Performance Tools for Data Services

Data Services built using Mochi have two basic questions
that need to be answered as far as performance is concerned:

• What does service performance mean and how can it be
measured?

• How can service performance be monitored and analyzed
(online) so as to generate a better service configuration
in response to changing application needs?

Traditional parallel performance analysis tools for HPC
typically rely on the use of a popular parallel performance
model such as MPI or OpenMP. RPC-based service requests
can span microservices across many nodes, and traditional
tools are not designed with this assumption in mind. Thus,
there is a need to design and develop new tools that support
the RPC paradigm.

B. Breadcrumb Profiling: A Quick Summary of Performance

We have designed a system that collects and presents a pro-
file of the timing of various microservice operations in the data
service. A breadcrumb in this context refers to an RPC callpath
profile. For example, if a Mochi microservice operation C is
invoked from two other microservice operations A and B, the
breadcrumb A→C represents a separate callpath from the
breadcrumb B→C. Each microservice instance keeps track
of its RPC callpath ancestry and forwards this information
along the request path (metadata propagation). Breadcrumb

timing and count information are collected on both the origin
(client) and target (server) side. Further, this information is
kept on a per-origin and per-target instance basis. This enables
a quick summary of the state of load-balance in the service
for various operations. Figure 1 depicts the top-5 breadcrumbs
in the execution of the Mobject data service, sorted by the
descending order of cumulative time across all target (server)
and origin (client) instances.

Fig. 1. Breadcrumb Profile: Cumulative Time

At the moment, instrumentation points inside microservices
are limited to client send/receive and server send/receive. We
intend to extend the level of instrumentation in the future. At
these points, the state of Argobot work-queues is collected
and their watermarks are summarized in the profile. We
are working on a tracing infrastructure that would give us
fine-grained information about individual microservice request
latencies which we will use to correlate with memory usage,
CPU load, and other Mercury-specific metrics.

REFERENCES

[1] M. Dorier et al., “Methodology for the rapid development of scalable hpc
data services,” in 2018 IEEE/ACM 3rd International Workshop on Parallel
Data Storage & Data Intensive Scalable Computing Systems (PDSW-
DISCS), 2018.

[2] J. Soumagne et al., “Mercury: Enabling remote procedure call for high-
performance computing,” in 2013 IEEE International Conference on
Cluster Computing (CLUSTER), 2013.

[3] S. Seo et al., “Argobots: A lightweight low-level threading and tasking
framework,” IEEE Transactions on Parallel and Distributed Systems,
2017.


