Understanding Data Motion in the Modern HPC Data Center

<u>Glenn K. Lockwood</u> Shane Snyder Suren Byna Philip Carns Nicholas J. Wright

Scientific computing is more than compute!

Goal: Understand data motion *everywhere*

Our simplified model for data motion

Relevant logs kicking around at NERSC

Normalizing data transfer records		
	Storage System Compute-Storage System Compute System	
	Parameter	Example
	Source site, host, storage system	NERSC, Cori, System Memory
	Destination site, host, storage system	NERSC, Cori, cscratch1 (Lustre)
	Time of transfer start and finish	June 4 @ 12:28 – June 4 @ 12:32
	Volume of data transferred	34,359,738,368 bytes
	Tool that logged transfer	Darshan, POSIX I/O module
	Owner of data transferred	uname=glock, uid=69615
Ø	U.S. DEPARTMENT OF Office of Science	7 - Argonne Argonne Laboratory

What is possible with this approach?

Visualizing data motion as a graph

- Job I/O is most voluminous
- Home file system usage is least voluminous
- Burst buffer is read heavy
- Users prefer to access archive directly from Cori than use DTNs

Mapping this data to our model

Adding up data moved along each vector

- Job I/O is significant
- Inter-tier is significant
 - I/O outside of jobs ~ job
 write traffic
 - Fewer tiers, fewer tears
- HPC I/O is not just checkpoint-restart!

Examining non-job I/O patterns

- Hypothesis: non-job I/O is poorly formed
 - Job I/O: optimized
 - Others: fire-and-forget
- Users transfer larger files than they store (good)
- Archive transfers are largest (good)
- WAN transfers are smaller than job I/O files (less good)

Few users resulted in the most transfers

1,562 unique users

ΤΟΚΙΟ

- **Top 4 users = 66% of** volume transferred
- **Users 5-8 = 5.8%**
 - All used multiple transfer vectors
 - Henry is a storageonly user

Examining transfers along many dimensions

- Break down transfers by r/w and file system
- Top users are read-heavy
 - Rereading same files
 - Targeting cscratch (Lustre)

Tracing using users, volumes, and directions

Argonne

RKELEY

Science

Is this the full story?

Quantify the amount of transfers <u>not</u> captured

- Compare volume transferred to system monitoring (storage systems)
- Compare bytes in to bytes out (transfer nodes)

Not every data transfer was captured

- 100 Captured by Transfers In/Write % True Data Volume 100% true data volume 80 Out/Read should be captured by 60 transfers 40 Missing lots of data why? 20 Darshan logs not 0 generated; cp missing Outside cscratch project Burst archive Buffer World Globus-HPSS adapter logs absent
 - Only Globus logged; rsync/bbcp absent

Identifying leaky transfer nodes

- Incongruency (Δ)
 - data in vs. data out
 - FOM for how "leaky" a node is
 - $\Delta = 0$ means all bytes in = all bytes out
- Cori: expect >> 0 because jobs generate data
- Science gateways > 0 because ???

Argonne

ERKELEY I

Towards Total Knowledge of I/O

There's more to HPC I/O than job I/O

- Inter-tier I/O is too significant to ignore
 - need better monitoring of data transfer tools
 - users benefit from fewer tiers, strong connectivity between tiers
 - need to optimize non-job I/O patterns
- Transfer-centric approaches yield new holistic insight into workflow I/O behavior
 - Possible to trace user workflows across a center
 - Humans in the loop motivate more sophisticated methods

We gratefully acknowledge the support of

- Damian Hazen (NERSC)
- Kristy Kallback-Rose (NERSC) Jon Dugan (ESnet)
- Nick Balthaser (NERSC) •
- Lisa Gerhardt (NERSC) •

- Ravi Cheema (NERSC)
- Eli Dart (ESnet)

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contracts **DE-AC02**-05CH11231 and DE-AC02-06CH11357. This research used resources and data generated from resources of the National Energy **Research Scientific Computing Center**, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the Argonne Leadership Computing Facility, a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

Few users result in the most transfers

Science

ΤΟΚΙΟ

Regularity of user I/O coupling

- how correlatable is a user's I/O across all vectors
- how easily we can guess what a user's workflow is doing
- Strongest correlation only between job reads and job writes
- "Excluding C-S/S-C" only shows workflows with storage-storage or storage-WAN activity

1,123 users represented in "all vectors" 486 users represented in "excluding C-S/S-C vectors"

- 23 -