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Applying Machine Learning to Understand Write 
Performance of Large-scale Parallel Filesystems

• Problem
– Understand the write performance of HPC applications running on 

large-scale systems

• Contribution
– Built accurate ML models for predicting the I/O write performance
– Interpreted multi-stage write behaviors of large-scale I/O subsystems 

• Impact
– Demonstrated that ML can be applied to predict the write 

performance of large-scale I/O subsystems
– Delivered a generic solution applicable to various large-scale I/O 

subsystems and technologies
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Motivation: Reduce the Write Cost

• Configure write burst size/rate tradeoffs

• Guide I/O middleware (e.g., ROMIO) to adapt write patterns

• Inform system job schedulers to yield tighter/better estimates of 
I/O cost and application runtime
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Related Works and Our Solution

• I/O performance studies
– Profiling supercomputer I/O subsystems under production loads
– Darshan toolkit
– Statistical benchmarking

• I/O middleware systems
– ROMIO, ADIOS

• ML in I/O performance prediction 
– Tune I/O parameters at application level
– Learn I/O patterns from job logs and system monitoring data

• Our Solution
– First ML work to predict write performance of large-scale parallel filesystems based on 

application write patterns, system architecture, and configurations
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Typical Scientific Applications

• HPC codes compute 
for a long time at large 
scales

• Produce write bursts 
that stall application 
executions and  
impact application 
runtime

• A generic example: XGC
– Evaluate physical equations iteratively 

over space: compute cost is 
predictable

– 4 types of bursts with different write 
frequencies and burst sizes:
• state snapshots: 500MB to 1.2GB
• diagnostic analysis bursts: 1MB – 400MB
• Bursts are stored as independent files

– Write stalls comprise 7-20% of run time
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Target I/O systems

• Titan and Spider 2 at OLCF/ORNL
– Cray XK7
– Lustre filesystem

• Cetus and Mira-FS1at ALCF/ANL
– IBM Blue Gene/Q
– GPFS filesystem

Storage SystemSupercomputer

Metadata 
Server

Client Server Target

SAN
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Challenges

• High performance variability

• Limited filesystem visibility for end-users
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High Performance Variability

1. CDFs of write performance variations 
on Titan and Cetus. 

2. The x-axis represents the relative measures 
( max/min ) of the write bandwidths of the 
experiment data (IOR benchmarks)

3. Write performance on Titan and Cetus is 
highly variable.
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Our Approach

• Highly variable, but reverts to mean over time
– Model the mean performance
– Effectively address the repeated I/O writes and aggregate impact

• Limited visibility for end users
– Extract features from write patterns and system architecture and configurations

• Interference
– Address noise as features

• ML solution
– Convergence-guaranteed sampling method 
– Lasso models 
– Systematic ML methodology
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End-to-end I/O Write Path
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Extract Features
• Insight: infer end-to-end burst absorption time based on 

performance-related parameters (write load, load skew, 
resources in use) at each stage 

• Collectable performance-related parameters on Titan and 
Cetus

• Predictable performance-related parameters on Spider 2 
and Mira-FS1

• Positive and inverse forms of performance-related 
parameters on separate stages, adjacent stages, and noise

• Titan/Spider 2: 41 features; Cetus/Mira-FS1: 30 features
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Systematic Machine Learning Approach

Candidate 
features a  Lasso model 

1. Train the model with 
10-fold cross validation.

2. Evaluate the model by 
Mean Square Error 
(MSE).

BEST 
MODEL

In each training set

For each 
model

Search for the model with 
minimum MSE from the 255 Lasso 
models each for 1 training set
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Experiments

• Train models on a small scale data set
– 3,465 (Titan) and 4,715 (Cetus) converged samples collected with 

multiple IOR benchmarks on the scale of 1-128 compute nodes 

• Evaluate models on medium scale
– 668 (Titan) and 874 (Cetus) converged samples produced by 200 -512 

compute nodes

• Evaluation criteria 
– Accuracy of the best model 
– Effectiveness of features
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Reported 4 models

• Lassobest
– With minimum Mean Square Error from 255 Lasso models across the 

training set candidates

• Lassobase
– The Lasso model trained on the write scales of 1-128 compute nodes

• Linearbest
– With minimum Mean Square Error from 255 Linear models across the 

training set candidates

• Linearbase
– The Linear model trained on the write scales of 1-128 compute nodes
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Results on Titan and Cetus

test set with 200, 256 nodes test set with 400, 512 nodes

test set with 200, 256 
nodes

test set with 400, 512 
nodes
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Results on Titan and Cetus

5 8.33 14.34 20.92 34.38 48.4 130.61
Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
Tr

ue
 E

rro
r

Lasso best_lustre
Lasso base_lustre
Linear best_lustre
Linear base_lustre

5.04 11.56 21.02 30.08 48.85 84.64 250.51
Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
Tr

ue
 E

rro
r

Lasso best_lustre
Lasso base_lustre
Linear best_lustre
Linear base_lustre

5.06 13.08 27.83 50.49 95.92 207.04 1281.38
Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
Tr

ue
 E

rro
r

Lasso best_gpfs
Lasso base_gpfs
Linear best_gpfs
Linear base_gpfs

5.13 14.33 33.61 62.79 107.76 191.26 2330.2
Samples sorted by t, Unit:Sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
Tr

ue
 E

rro
r

Lasso best_gpfs
Lasso base_gpfs
Linear best_gpfs
Linear base_gpfs

Lasso_best is highly accurate and 
the best model

Titan/Spider 2

Cetus/Mira-FS1



1717 Open slide master to edit

Conclusions
• Problem

– Understand the I/O write performance of large-scale supercomputers

• Our Solution
– Systematic ML approach with Lasso
– Modeling the mean performance, extracting features from application write patterns, 

system architecture and configurations, convergence-guaranteed sampling

• Findings
– Lassobest is the most accurate model for both Titan and Cetus
– Most effective features are load skew in supercomputers and resources in use on the 

system side

• Applicability
– Lasso models, features: Lustre, GPFS deployment 
– Systematic modeling method: generic supercomputer I/O subsystems 
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