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Abstract—Python-written data analytics applications can be
modeled as and compiled into a directed acyclic graph (DAG)
based workflow, where the nodes are fine-grained tasks and
the edges are task dependencies.Such analytics workflow jobs
are increasingly characterized by short, fine-grained tasks with
large fan-outs. These characteristics make them well-suited for
a new cloud computing model called serverless computing or
Function-as-a-Service (FaaS), which has become prevalent in
recent years. The auto-scaling property of serverless computing
platforms accommodates short tasks and bursty workloads,
while the pay-per-use billing model of serverless computing
providers keeps the cost of short tasks low.

In this paper, we thoroughly investigate the problem space
of DAG scheduling in serverless computing. We identify
and evaluate a set of techniques to make DAG schedulers
serverless-aware. These techniques have been implemented
in WUKONG, a serverless, DAG scheduler attuned to AWS
Lambda. WUKONG provides decentralized scheduling through
a combination of static and dynamic scheduling. We present the
results of an empirical study in which WUKONG is applied to
a range of microbenchmark and real-world DAG applications.
Results demonstrate the efficacy of WUKONG in minimizing
the performance overhead introduced by AWS Lambda —
WUKONG achieves competitive performance compared to a
serverful DAG scheduler, while improving the performance of
real-world DAG jobs by as much as 3.1× at larger scale.

I. INTRODUCTION

In recent years, a new cloud computing model called
serverless computing [8, 19] (Function-as-a-Service or
FaaS)1 has become prevalent, owing to OS-level (i.e.,
container-based) virtualization. Serverless computing en-
ables a new way of building and scaling applications
and services by allowing developers to break traditionally
monolithic server-based applications into finer-grained cloud
functions2; developers can thus focus on developing function
logic without having to worry about provisioning, scaling,
and managing traditional backend servers or VMs, which
are notoriously tedious to maintain [16].

With their growth in popularity, serverless computing
solutions have found their way into both commercial clouds
(e.g., AWS Lambda, Google Cloud Functions, and IBM
Cloud Functions) and open source projects (e.g., Open-
Lambda [20]). While serverless platforms were originally
intended for event-driven, stateless applications [1], recent
trend has demonstrated the usage of serverless computing in
support of more complex applications.

1We use the term “serverless computing” and “FaaS” interchangeably.
2Without loss of generality, we use “Lambda functions” to represent

cloud functions throughout.

One such example is DAG (directed acyclic graph)
workflow-based data analytics applications. These applica-
tions are characterized by short, fine-grained tasks with
large fan-outs [27, 2, 17]. For example, an analysis of
Alibaba workload traces shows that more than 50% of the
analytics batch jobs, tasks, and instances are finished within
10 seconds [17, 12]. The auto-scaling property of serverless
platforms makes these platforms well-suited for the short,
fine-grained tasks and bursty, large fan-outs that characterize
DAG-based workflows. In addition, FaaS providers charge
users at a fine granularity – AWS Lambda bills on a
per-invocation basis ($0.02 per 1 million invocations) and
charges resource usage by rounding up the function’s exe-
cution time to the nearest 100 milliseconds (ms). Workloads
with short tasks can take advantage of this fine-grained
pay-as-you-go pricing model to keep monetary costs low3.
Consequently, serverless computing can be leveraged as
a promising solution for next-generation large-scale DAG
workloads in high-performance computing (HPC), data an-
alytics, and data sciences.

Moving DAG scheduling from a traditional serverful
deployment to the emerging serverless platforms presents
unique opportunities. In a traditional serverful deployment,
the best practice is to utilize a logically centralized scheduler
for managing task assignments and resource allocation under
various objectives including load balancing, cluster utiliza-
tion, fairness and so on. State-of-the-art serverful workflow
schedulers include but are not limited to: MapReduce job
scheduler [13], Apache Spark scheduler [31], Sparrow [27],
and Dask [4]. In the context of serverless computing, how-
ever, the assumptions of the traditional serverful schedulers
do not hold any more. This is because: (1) FaaS providers are
responsible for managing the “servers” (i.e., where the task
executors are hosted); and (2) serverless platforms typically
provide a nearly unbounded amount of ephemeral resources.
As a result, a hypothetical serverless DAG scheduler may
not necessarily care about traditional “scheduling”-related
metrics and constraints (such as load balancing and clus-
ter utilization), as an individual task could be executed
anywhere in the serverless data center that is essentially
managed by the service provider.

Yet, designing a fast and efficient serverless-oriented
DAG engine introduces challenges. First, a task needs to

3Pay-as-you-go in the context of serverless computing is essentially not
paying for what are not being used.



be dispatched to a Lambda function as fast as possible.
With this in mind, a logically centralized scheduler would
inevitably introduce a performance bottleneck, especially for
short-task dominated workloads. Second, as already men-
tioned, serverless platforms come with inherent constraints
including limited outbound-only network connectivity; as
such, a workflow has to rely on an external storage system
for storing intermediate data, which impacts data locality
and incurs extra network communications. Researchers have
developed solutions on serverless computing platforms for
supporting parallel jobs [21, 15, 29]; however, these attempts
do not fully investigate decentralized DAG scheduling for
serverless computing. Therefore, current state-of-the-art de-
mands a new serverless-native DAG framework optimized
to minimize the network communication overhead while
maximizing data locality whenever possible.

In this paper, we argue that a serverless DAG engine
urgently demands a radical redesign, with a focus shifted
away from the techniques optimized for traditional DAG
schedulers targeting serverful deployments. To this end, we
present WUKONG, a serverless-oriented, decentralized, data-
locality aware DAG engine. WUKONG uniquely exploits
the elasticity of the serverless platform (in our case AWS
Lambda) and completely delegates the requirements of load
balancing, fairness, and resource efficiency to the serverless
platform. WUKONG is novel in that it realizes decentralized
scheduling where a DAG is partitioned into sub-graphs that
are distributed to separate task executors (implemented as
an AWS Lambda runtime). Lambda runtimes schedule the
tasks in their sub-graphs and cooperate (at “joins” on sub-
graph boundaries) to dynamically schedule tasks that are
in two or more sub-graphs but that must only be executed
once. WUKONG also provides efficient storage mechanisms
for managing intermediate data; however, according to our
factor analysis in §V-B, WUKONG’s decentralized design has
the most influence on its performance. The decentralized
design minimizes communication overhead and improves
scalability by increasing data locality.

Specifically, we make the following contributions:
• We thoroughly investigate the problem space of DAG

scheduling in serverless computing,
• We identify and evaluate a set of techniques to make

DAG scheduling serverless-aware,
• We design and implement WUKONG, a serverless DAG

engine attuned to AWS Lambda,
• We evaluate WUKONG to validate its efficacy and

design tradeoffs.

II. BACKGROUND AND RELATED WORK

A. Serverless Computing Primer
Serverless Computing handles virtually all the system
administration operations to make it easier for users and
developers to use a near-infinite amount of cloud resources
including bundled CPUs and memory, object stores, and a

lot more [22]. Service providers provide a flexible function
interface so that developers can completely focus on devel-
opment of the core application logic; service providers in
turn help automatically scale the function executions in a
demand-driven fashion, hiding the tedious cluster configura-
tion and management overheads from the users.
General Constraints and Limitations: Service providers
place limits on the use of cloud resources to simplify
resource management. Take AWS Lambda for example:
users have the flexibility of configuring Lambda’s memory
and CPU resources in a bundle. Users can choose a memory
amount between 128MB and 3008MB in 64MB increments.
Lambda allocates CPU power linearly in proportion to the
amount of memory configured. Each Lambda function can
run at most 900 seconds and will be forcibly returnedwhen
function timeouts. In addition, Lambda only allows out-
bound TCP network connections and bans inbound connec-
tions and UDP protocol.

In addition to these constraints, serverless computing
suffers from a “cold start” penalty [30, 26, 10]4 associated
with container startups. Service providers rely on container
caching (i.e., warmed functions) to mitigate the impact of
cold starts on elasticity. Another limitation that plagues
the runtime performance of serverless applications is the
lack of a quality-of-service (QoS) control. As a result,
functions suffer from the straggler issues [28]. Therefore, an
ideal serverless DAG framework should be able to provide
effective workaround solutions.
Opportunities: Running DAG parallel jobs (e.g., distributed
linear algebra, distributed data analytics, etc.) has long been
challenging for domain scientists and data analysts due to
accessibility, configuration, provisioning, and cluster man-
agement complexity. The emerging serverless computing
model seems to provide an attractive-enough foundation for
potentially relieving the domain scientists and data analysts
of the tedious cluster administration efforts. However, to
bridge the gap, current state-of-the-art badly requires a fast
and efficient serverless-aware DAG framework middleware.
B. Serverless Workflow Management Frameworks

Existing serverless frameworks have been built using two
main approaches. The first is a queue-based master-worker
approach in which the master orchestrates the workflow
and submits tasks that are ready for execution to a queue.
Workers are cloud functions that process these tasks in
parallel when possible. For example, numpywren [29] is a
serverless linear algebra framework. numpywren workers are
implemented using PyWren [21], which is a framework for
executing data-intensive batch processing workloads.

In the second approach, the master directly invokes cloud
functions to process ready tasks [7, 3]. Examples of this
include Sprocket [11] and ExCamera [15], which have
been developed for serverless video processing. This second

4“Cold start” refers to the first-ever invocation of a function instance.
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Figure 1: The strawman scheduler ar-
chitecture. 1 The scheduler invokes a
Lambda function, which establishes a
TCP connection with the scheduler, ex-
ecutes the task, and then 2 sends the
output results to the KV store. Once
the Lambda function receives an ACK
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Figure 2: The pub/sub architecture.
1 The scheduler invokes a Lambda

function, which executes the task, and
then publishes the output results to
the KV store in 2 . The scheduler as
the subscriber listens for messages on
predefined channels, and gets notified
in 3 whenever a Lambda function
publishes the results to the KV store.
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Figure 3: The parallel-invoker ar-
chitecture. This architecture extends
the pub/sub architecture in Figure 2
with a parallel-invoker that acceler-
ates Lambda invocations by spawn-
ing multiple invoker processes in
the scheduler to concurrently invoke
Lambda functions.

approach is also used by general purpose serverless orches-
tration frameworks. Example frameworks include AWS Step
Functions, Azure Durable Functions, Fission Workflows [6],
and the framework in [24].

Lòpez et al. [23] evaluated AWS Step Functions and
Azure Durable Functions with respect to their support for
parallel execution, among other attributes. They found that
overhead for parallelism grows exponentially with the num-
ber of parallel functions for AWS Step Functions and Azure
Durable Functions.

Fission Workflows is built on top of the Fission [14]
serverless framework for Kubernetes. Users define a DAG
by creating a configuration file, which defines tasks and
their dependencies. The framework in [24] is built upon
the HyperFlow [7] workflow engine. HyperFlow models its
workflows using user-written JSON files, and thus is similar
to Fission Workflows with respect to how workflows are
represented. While manually composing a DAG configura-
tion may work well for coarse-grained microservice-based
workflow applications, manually implementing a complex,
fine-grained workflow is nontrivial. For this reason, [6, 24]
are not well-suited for supporting complex computing jobs
implemented using high-level programming languages.

WUKONG uses neither a master-worker-queue approach
nor a direct invocation approach. Instead, WUKONG adopts
a decentralized approach in which the global DAG is par-
titioned into local subgraphs. Each WUKONG executor is
responsible for scheduling and executing the tasks within
its assigned subgraph in an autonomous manner. An ex-
ecutor assumes the master’s role when it uses its assigned
subgraph to determine when its tasks can be executed; an
executor assumes a worker’s role when it executes these
tasks. WUKONG executors coordinate to ensure that the
dependencies in the global DAG are satisfied.

III. MOTIVATIONAL STUDY: A JOURNEY FROM THE
SERVERFUL TO THE SERVERLESS

Prior to the emergence of the serverless computing model,
DAG schedulers were designed to work with a finite number
of compute and storage resources. These schedulers have to
maintain a (complete or partial) global view of which tasks
are running where, and use this view to optimize with respect
to certain predefined objectives. Serverless computing, on
the other hand, offers a nearly infinite amount of ephemeral
resources, which are transparently managed by the service
provider. Consequently, traditional schedulers would fail to
utilize cloud resources optimally. WUKONG takes a radically
different approach and is motivated by the above obser-
vations with the goal of improving the performance for
task dispatching with respect to serverless platforms. In this
section, we present our motivational study of designing a
fast and efficient serverless DAG engine.

A. A Strawman Scheduler
We began our journey by implementing a centralized DAG

scheduler, which simply parsed the user-defined job code,
generated a DAG data structure, and sent off the DAG tasks
to a group of Lambda functions for execution. Our strawman
scheduler was a modification of the Python-written Dask
distributed scheduler. Dask is an open-source parallel
computing library for Python data analytics [4]. Tradition-
ally, Dask distributed executes tasks within so-called
worker processes, each running as a long-lived server across
a cluster of machines. In Dask, the scheduler sends tasks
to the worker processes for execution. Worker processes
run as long-lived servers across a cluster of machines.
The Dask distributed scheduler uses a communication
protocol to communicate with workers and balance their
load with respect to certain optimization constraints, such as
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data locality and memory consumption. We reused the DAG
and communication protocol modules from Dask, used AWS
Lambda for task execution instead of worker processes, and
disabled load balancing as load balancing is handled by
AWS Lambda.

In a typical serverful distributed processing framework,
worker processes can directly communicate with each other
using TCP. A worker process that needs to execute a task T

may find that T’s input data is not stored locally. This worker
will then issue TCP requests for T’s input data to the workers
who executed the upstream tasks that output this data. In our
serverless computing environment, Lambda functions are not
allowed to accept inbound TCP connection requests. Due
to this constraint, the upstream tasks in WUKONG would
have to store their output data in external distributed storage
(a key-value store or KV store in short), from which the
dependent downstream tasks can read their input data and
make progress. Figure 1 depicts the strawman approach.

B. Publish/Subscribe Model
While the centralized strawman scheduler worked, it

suffered from several performance bottlenecks. The first
performance bottleneck was due to the large number of con-
current TCP connection requests sent to the scheduler from
the Lambda functions. A short-lived Lambda function will
immediately request a TCP connection with the scheduler to
acknowledge the completion of its task. This makes it easy
for a pool of thousands of newly invoked Lambda functions
to overwhelm the scheduler. This is not a problem for a
serverful deployment, e.g., a statically deployed Hadoop
cluster with hundreds of worker nodes that established TCP
connections at cluster initialization phase.

To address this problem, we adopted a pub/sub (publish-
er/subscriber) approach (Figure 2). The pub/sub scheduler
provided higher performance than the strawman scheduler,
since sending task completion messages through pub/sub
channels was more efficient than using a large number of
concurrent TCP connections; also, the number of network
hops was reduced. The pub/sub architecture was easy to
integrate, since external storage was already being used to
store intermediate results.

C. +Parallel Invokers
While the pub/sub approach had substantially improved

network performance, the framework struggled to launch
Lambda functions quickly enough for large, bursty work-
loads. This is due to the large cost of invoking a Lambda
function (e.g., invoking an AWS Lambda function takes
about 50 milliseconds with the Boto3 AWS Python API). To
scale-up Lambda invocation performance, we created a large
number of dedicated Lambda-invoker processes co-located
with the scheduler (Figure 3). When DAG task dependencies
resolve, the scheduler evenly distributes task invocation
responsibilities among multiple invoker processes, enabling
(near-)linear speedup.
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Figure 4: Performance comparison of different design itera-
tions for Tree Reduction (TR). TR is a microbenchmark with
a tree-like DAG topology [9], which combines neighboring
elements until there is only one left. We ran TR with
an initial array of 1024 numbers (i.e., 512 leaf tasks at
the bottom of the DAG) on each system ten times and
recorded the average (bars), and {min, max} (error bars).
We intentionally added sleep-based delays in each task to
simulate a compute task with a controllable duration.

Figure 4 plots the average execution time achieved by
each design iteration. We intentionally added a sleep-based
delay to each task in order to simulate a compute task with
controllable duration. For TR test with 0ms sleep delays, the
performance difference between the strawman and pub/sub
versions of our framework is roughly the same due to the
fact that the TR workload is primarily dominated by the
communication overhead of transferring the array over the
network. As noted above, the parallel-invoker version is able
to execute TR 24.2% faster than strawman and pub/sub. This
is because TR is also characterized by a large number of leaf
tasks. Specifically, the TR algorithm generates n

2 leaf tasks,
where n is the length of the input array. The parallel-invoker
version can invoke the leaf tasks at a significantly higher rate
than strawman and pub/sub; consequently, parallel-invoker
performs better for workloads with a large number of leaf
tasks. As the time span of each task increases, pub/sub start
to show performance benefit against strawman, because a
less number of TCP connections significantly reduces the
amounts of IRQ requests which flood the strawman case.
Parallel-invoker improves the performance against pub/sub,
but is still sub-optimal due to network I/O overheads. The
goal of WUKONG is to reduce the execution time of a DAG
job, an optimal serverless DAG engine that dispatches DAG
tasks with minimum runtime overhead.

One critical issue of the parallel-invoker architecture is its
large commitment of resources to the centralized pub/sub
scheduler throughout the whole course of the workload.
Due to this, we moved to a decentralized scheduler design.
This major design change came about as a result of a key
observation, which was that the scheduler was only being
used to launch downstream tasks as data dependencies of
the DAG were resolved. Instead of scaling-up the invo-
cation process of the centralized scheduler, each Lambda
function could directly handle the responsibility of invoking
downstream tasks without having to coordinate with the
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Figure 5: Overview of WUKONG architecture.

centralized scheduler. This lead to an effective, serverless-
aware, scale-out design that is described next.

IV. WUKONG DESIGN

In this section, we present the system design of WUKONG.
We describe the high-level components and discuss the tech-
niques used for static scheduling, task execution, dynamic
scheduling, and managing storage.

A. High-Level Design

WUKONG consists of three major components: a static
scheduler, a serverless task execution and scheduling run-
time, and a storage manager. Figure 5 shows the high-level
design of WUKONG. This figure reflects a major design
revision to the Pub/Sub scheduler described at the end of
§III. This revision removed the requirement for Lambda
functions to acquire downstream tasks from the KV store.
We modified the scheduler to produce static schedules,
where each schedule represents a sub-graph of the DAG.
A static schedule contains all the task code and other
required (static) information, e.g., data dependencies, for
each task in the sub-graph. The scheduler now passes a static
schedule to each Lambda function it invokes, meaning that
each function starts with all of the task code that it may
have to execute. This removed the necessity for Lambda
functions to grab downstream task code from the KV store,
which speeds up execution by decentralizing WUKONG.
Since static schedules contain the dependencies, scheduling
operations for fan-in and fan-out processing can be done
dynamically by the Lambda functions, which removes the
need for a centralized scheduler to determine when data
dependencies have been satisfied.

B. Static Scheduling

WUKONG users submit a Python computing job to
WUKONG’s DAG generator, which converts the job into
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Figure 6: Static and dynamic scheduling.

a DAG. The static Schedule Generator generates static
schedules from the DAG. For a DAG with n leaf nodes,
n static schedules are generated. A static schedule for leaf
node L contains all of the task nodes that are reachable from
L and all of the edges into and out of these nodes. The data
for a task node includes the task’s code and the KV Store
keys for the task’s input data. The schedule for L is easily
computed using a depth-first search (DFS) that starts at L.
Figure 6(a) shows a DAG with two leaf nodes. Figure 6(b)
shows the two static schedules that are generated from the
DAG — Schedule 1 is the nodes and edges in the region
colored blue (left) and Schedule 2 is the nodes and edges
in the region colored red (right).

Static schedules are used to reduce the number of network
I/O operations that must be performed by the Task Execu-
tors, which improves overall system performance. Instead
of executing a single task and retrieving the next task from
the KV store, Task Executors receive a static schedule of
all of the tasks (including the task code) they may possibly
execute.

A static schedule contains three types of operations: task
execution, fan-in, and fan-out. Note that there is at least
one fan-in or fan-out operation between each pair of tasks.
To simplify our description, when tasks T1 is followed
immediately by task T2 in a DAG and T1 (T2) has no fan-
out (fan-in), we add a trivial fan-out operation between T1

and T2 in the static schedule. This fan-out operation has one
incoming edge from T1 and one outgoing edge to T2, i.e.,
there is no actual fan-out. In Figure 6(a) and Figure 6(b),
this is the case for tasks T2 and T3.

A task operation may appear in more than one static
schedule. In Figure 6(b), tasks T4 and T6 are both in
Schedule 1 and Schedule 2. This will create a schedul-
ing conflict between the Task Executors that are assigned
to schedule these tasks, since tasks T4 and T6 should
be executed only once. There is not enough information
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available in the DAG to statically determine how to resolve
scheduling conflicts so that execution time is minimized;
instead, conflicts are resolved by dynamic scheduling oper-
ations performed by the Task Executors. Note also that a
static schedule does not map a given task T to a processor;
this mapping is done dynamically and automatically by the
AWS Lambda runtime when the Task Executor that will
(eventually) execute task T is invoked. A static schedule only
specifies a valid partial-ordering of the tasks it contains —
tasks are to be executed in bottom-up order, starting with
the leaf node in the static schedule. Dynamic scheduling
during task execution imposes the remaining constraints on
task order. The time and place that tasks are executed is
determined at runtime.

C. Task Execution and Dynamic Scheduling

Execution starts when the scheduler’s Initial Task Execu-
tor Invokers assign each static schedule produced by the
Schedule Generator to a separate AWS Lambda function,
which we refer to as a Task Executor, and invoke the set
of initial Task Executors in-parallel. Each of these Task
Executors performs the first operation in its static schedule,
which is always to execute the leaf node task in its static
schedule. In Figure 6(b), Task executors E1 and E2 execute
leaf tasks T1 and T2, respectively. An Executor will then
execute the tasks along a single path in its static schedule,
enforcing the static ordering of tasks along the path.

If Task Executor E executes a fan-out operation with only
one out edge, the operation has no effect — Executor E

simply performs the next operation in its schedule, which
will be to execute the next task. A Task Executor may
thus execute a sequence of tasks before it reaches a fan-out
operation with more than one out edge or a fan-in operation.
For such a sequence of tasks, there is no communication
required for making the output of the earlier tasks available
to later tasks for input. All intermediate task outputs are
cached in the local memory of the the Task Executor.

If Task Executor E executes a fan-out operation with n
(where n > 1) out edges, then E invokes n − 1 new Task
Executors. The intermediate output objects that are needed
by the new Executors are sent to the Storage Manager for
storage in the KV Store, and the associated keys are passed
to the invoked Executors as arguments. Each of the n − 1
Executors will be assigned a static schedule that begins
with one of the n − 1 out edges. Each of these (possibly
overlapping) static schedules corresponds to a sub-graph
of E’s static schedule. Executor E continues task execution
and scheduling along the remaining out edge and executes
the next operation encountered on this edge. We say that
E becomes the Executor for one out edge and invokes
Executors for the remaining n−1 out edges. In Figure 6(b),
each fan-out operation has one edge labeled “becomes” and
0 or more out edges labeled “invokes”. The label on an in or
out edge also indicates the Executor that is performing the

dynamic scheduling operations that involve that edge. For
Executor E2, the first fan-out operation is trivial. On E2’s

second fan-out operation, E2 becomes the Executor that will
execute T5 and invokes Executor E3.

As mentioned above, a fan-in operation represents a
scheduling conflict between two or more Task Executors that
are executing overlapping static schedules. If Task Executor
E executes a fan-in operation with n (where n > 1) in-edges,
then E and the n− 1 other Task Executors involved in this
fan-in operation cooperate to see which one of them will
continue their static schedules on the out edge of the fan-
in. The Task Executors that do not continue will send their
intermediate output objects to the Storage Manager and stop.
In Figure 6(b), the first fan-in operation of Executors E1 and
E3 resolves the conflict between their static schedules. We
assume that E3’s fan-in operation is executed after E1’s
fan-in operation; thus, E1 stops and E3 continues executing
its static schedule at the out edge of the fan-out. At E3’s
next fan-in operation, which also involves E2, we assume
E3 executes its fan-in operation last so that E2 stops and E3

executes task T6 and then stops.
Task Executors cooperate on fan-in operations for a fan-in

F by accessing an associated dependency counter for F that
is stored in the KV Store. This counter tracks the number
of F’s input dependencies that have been satisfied during
execution. When a Task Executor E finishes the execution of
a task that is one of the input dependencies of F, Executor E
performs an atomic increment operation on the dependency
counter of F. The updated value of the dependency counter
is then compared against the number of input dependencies
of F. If the value of the dependency counter is equal to the
number of input dependencies, then all input dependencies
of F have been satisfied and the task T on the out edge
of F is ready for execution. In this case, task E, which
executed the last dependent task of the fan-in, will continue
its static schedule by executing T. If, instead, the value of the
dependency counter is less than the number of input of F,
then some input dependencies of F have yet to be satisfied.
In that case, task T is not ready for execution, so E saves its
intermediate output objects and stops. Notice that no Task
Executor waits for any input dependencies of a fan-in to be
satisfied. Note that AWS Lambda would bill Task Executors
for wait time, which is why waiting is avoided.

For fault tolerance, we relied on the automatic retry
mechanism of AWS Lambda, which allows for up to two
automatic retries of failed function executions. In the future,
we will investigate more advanced error handling mecha-
nisms.
D. Storage Management

The Storage Manager performs various storage operations
on behalf of the Task Executors and the Scheduler. At the
start of workflow processing, the Storage Manager receives
the workflow DAG and the static schedules derived from the
DAG from the Scheduler.
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Intermediate and Final Result Storage: Task Executors
publish their intermediate and final task output objects to the
KV Store. Final outputs are relayed to a Subscriber process
in the Scheduler for presentation to the Client.
Small Fan-out Task Invocations: When a Task Executor
performs a fan-out operation that has a small number of out
edges, the Task Executor will make the necessary Executor
invocations itself. However, sequentially executing a large
number of invocations is time consuming so the Executor
Task invocations are performed in parallel with assistance
from the Storage Manager.
Large Fan-out Task Invocations: When a fan-out has a
number of out edges that is larger than a user-specified
threshold, the Task Executor publishes a message that is
relayed to a Subscriber process in the Storage Manager,
which passes the message to the Proxy. This message
contains an ID that identifies the fan-out’s location in the
DAG. The Proxy uses the DAG and the fan-out ID to
identify the fan-out’s out edges in the DAG. This allows
the Proxy, with the assistance of the Fan-out Invokers in
the Storage Manager, to make the necessary Task Executor
invocations, in parallel. The Proxy passes to each Executor
its intermediate inputs (or their key values in the KV Store)
and the Executor’s static schedule.

V. PRELIMINARY RESULTS

We have implemented WUKONG using roughly 6, 000
lines of Python code (about 2, 500 LoC for the AWS Lambda
Runtime, 2, 400 LoC for the Storage Manager, and 1, 100
LoC for the Static Scheduler). WUKONG currently supports
AWS Lambda. Porting WUKONG to other public cloud and
open source platforms is our work in progress.
Experimental Goals and Methodology. The goals of our
preliminary evaluation were to:

• identify and describe the main factors influencing the
performance and scalability of WUKONG,

• compare WUKONG against the serverful Dask frame-
work to determine whether WUKONG can achieve com-
parable performance, even with the inherent limitations
imposed by AWS Lambda.

We compare the performance of WUKONG against Dask
distributed on two different setups: a five-node EC2
cluster with each virtual machine (VM) running five worker
processes and a local setup on a laptop with four worker
processes. We repeated the same tests on an easy-to-use
laptop computer to further demonstrate that, with the same
workload, WUKONG can achieve superior performance with
minimal cluster administration effort.

Our evaluation was performed on AWS. The static sched-
uler ran in a c5.18xlarge EC2 VM and the KV Store was
a Redis cluster partitioned across ten c5.18xlarge shards.
The KV Store proxy was co-located on the same VM as one
of the ten Redis shards. Each Lambda function was allocated
3GB memory with a timeout parameter set to two minutes.
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Figure 7: TR performance comparison.

Each node in the five-node cluster was an EC2
t2.2xlarge VM. We configured this cluster with general-
purpose VMs to see if our serverless platform could match
their performance. We opted to not configure a cluster of
increased price and performance as we cannot configure our
AWS Lambda functions to match the processing power of
such a cluster. Further, we cannot control for the various
restrictions held in place by Amazon including the rate
at which we can invoke Lambda functions, the memory
allocated to Lambda functions (above 3GB), the network
resources allocated to each function, etc. The laptop was
equipped with a two-core Intel i5 CPU @ 2.30GHz. Each
Dask worker was allocated 2GB of laptop memory.

We describe the tested DAG applications as follows.
Tree Reduction (TR): TR sums the elements of an array.
TR repeatedly adds adjacent elements until only a single
element remains. The implementation used here is general-
purpose; it is not optimized for a highly distributed, server-
less algorithm, serving as a microbenchmark for effectively
evaluating serverless DAG engine.
General Matrix Multiplication (GEMM): GEMM, as the
core of many linear algebra algorithms, performs matrix
multiplication. We evaluate the performance of WUKONG
for GEMM with two different matrix sizes: 10, 000×10, 000
and 25, 000× 25, 000.
Singular Value Decomposition (SVD): Two SVD work-
loads are used. The first workload computes the SVD of
a tall-and-skinny matrix, i.e., a matrix with a significantly
larger number of rows than columns (SVD1). The second
workload computes the rank-5 SVD of an n × n matrix
using an approximation algorithm (SVD2) provided by [18].
We use both SVD workloads as a real-world application to
evaluate the performance of WUKONG for increasingly large
SVD problem sizes.
Support Vector Classification (SVC): SVC is a real-world
machine learning application. We evaluate the performance
of WUKONG on SVC with increasingly large problem sizes.
This workload is a benchmark that was retrieved from the
publicly available Dask-ML benchmarks [5].
A. End-to-End Performance Comparison

As mentioned earlier, serverless computing suffers from
cold starts. We address this issue by warming up a pool
of Lambdas, which is the same strategy employed by Ex-
Camera [15]. Due to AWS’ planned cold-start performance
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Figure 8: GEMM performance comparison.

optimizations for Lambdas running within a virtual private
cloud [25], “cold start” penalties should not be nearly as
large of an issue in the future.

We first examine the performance of TR (for a preliminary
analysis that compares the various design iterations please
refer to Figure 4 in §III-C). As shown in Figure 7, WUKONG
greatly outperforms all previous versions of the framework.
The decentralized scheduler reduces the network I/Os re-
quired to complete the workload; however, due to the ex-
tremely short-duration add operations used by TR with 0ms
sleep delays, the communication overhead of transferring the
underlying array greatly outweighs the performance gains
from increased parallelism. This is why WUKONG achieves
lower performance than Dask (EC2). WUKONG outperforms
all other execution platforms when small sleep delays are
added to each operation of the tree reduction. WUKONG
executes 2.5× faster than Dask (EC2) in the case of 500ms
delays. These small delays simulate additional work for
each task. The results of this workload with added delays
indicate that for workloads with longer tasks, the increased
parallelism provided by WUKONG outweighs the communi-
cation overhead, demonstrating that our decentralized DAG
scheduler incurs minimum overheads.

The results of our GEMM tests further demonstrate
WUKONG’s superiority in elasticity and performance. In
the case of case of 10, 000× 10, 000 matrix multiplication,
WUKONG executed the workload more than twice as fast
as Dask (EC2) and more than five times as fast as Dask
(Laptop). Dask (EC2) could likely perform this workload
faster if the cluster was larger, whereas for WUKONG, it
leverages the large number of CPUs provided by AWS
Lambda to elastically scale up the performance. When
multiplying 50, 000× 50, 000 matrices, both setups of Dask
(Laptop and EC2) suffered from out-of-memory (OOM)
errors, failing to complete the job. Our analysis of GEMM
on WUKONG indicates that these workloads were dominated
by the communication overhead of transferring portions of
the matrix to the Task Executors.

Next we analyze the performance of the two SVD work-
loads. For SVD1, we used the following numbers of rows:
200k, 400k, 800k, and 1, 000k. Figure 9 shows that both
Dask (EC2) and WUKONG were able to greatly outperform
Dask (Laptop). For the first two problem sizes, Dask (EC2)
out-performed WUKONG; however, as the problem size in-
creased, the performance of WUKONG began to exceed that
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Figure 9: SVD1: SVD of tall-and-skinny matrix.
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Figure 10: SVD2: SVD of general matrix.

of Dask (EC2). This is because the parallelism from AWS
Lambda began to outweigh the communication overhead of
the workload. Even so, the overhead associated with network
I/Os was a significant factor in the performance of this
workload on WUKONG.

The dominance of communication in SVD was further
demonstrated by the first three workload sizes of the SVD2
on a general n×n matrix (Figure 10). Dask (EC2) was faster
than WUKONG for relatively smaller problem sizes, since
the statically-deployed Dask distributed cluster supports
direct worker-to-worker communication with less network
I/O overhead (especially for large intermediate results), and
the CPU resources of the cluster did not yet become a
bottleneck. Additionally, Dask (Laptop) suffered from OOM
errors in the 50k × 50k case and was unable to complete
the workload. Finally, WUKONG executed the 100k× 100k
workload 3.1× faster than Dask (EC2), again because of
the elasticity of WUKONG. WUKONG does not require
extra administration effort for scaling out the computation
capacity, whereas Dask (EC2) would do, thus imposing
extra burden to the end users. The number of Lambda
functions used for each of the workloads was 84, 480, 295,
and 1082, respectively. The 50k × 50k workload used less
Lambdas than the 25k × 25k workload due to the strategy
used to partition the initial input data. Different input data
partitioning strategies may introduce different parallelism-
communication tradeoffs and affect scalability. We plan to
investigate partitioning strategies as part of our future work.

Finally, we analyze the performance of SVC on WUKONG
(Figure 11). We varied the SVC problem size (in this case,
number of samples) over the values 100k, 200k, 400k,
and 800k. While Dask (EC2) completes the job slightly
faster than WUKONG for the smallest problem size, the
performance of WUKONG begins to exceed Dask (EC2) as
the problem size increases. The performance gap increases
as the problem size varied from 400k to 800k. For a sample
number of 800k, WUKONG is able to execute the workload
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Figure 12: Contributing factors of different optimization
techniques employed in WUKONG.

nearly 2× as fast as Dask (EC2). This again strengthens
our confidence that WUKONG can serve as a generic DAG
engine for accelerating complex real-world applications such
as machine learning.

B. Factor Analysis
WUKONG is able to effectively scale out to support large

problem sizes and workloads. Figure 12 shows the amount
that each major version of WUKONG contributed to the
overall performance improvement from the original Straw-
man version to the current version. The most significant
improvement came as a result of the decentralization of
the Task Executors. Prior to Task Executor decentralization,
Task Executors would only execute the task initially given
to them by the static scheduler. Once decentralized, Task
Executors instead retrieved new tasks from the KV Store
each time they completed the execution of their current task.

Other significant improvements to the overall performance
of WUKONG included the use of dedicated task invoker
processes, which originated in the Parallel Invokers version,
and the use of the KV Store Proxy to parallelize large
task fan-outs. The effect of the KV Store Proxy varied
depending on the workload since workloads that lacked high
fan-outs would not actually utilize the proxy. Switching the
communication protocol used by the KV Store Proxy from
TCP to Redis PubSub also resulted in a fairly substantial
performance improvements. Just as for the static scheduler,
Redis PubSub enabled the KV Store Proxy to handle a
higher volume of messages from Task Executors. Finally,
running each KV Store shard on its own separate VM
resulted in a significant performance improvement. Initially,
all KV Store shards were running on the same VM, which
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Figure 13: CDF breakdown of tasks in SVD2 with a 50k×
50k matrix.

resulted in resource contention for network bandwidth. Plac-
ing each shard on its own VM eliminated this bottleneck.

C. Overhead Quantification

The overhead associated with storing and retrieving large
intermediate data values during workload execution is a
major factor that impacts WUKONG’s performance. For
workloads characterized by short tasks and large commu-
nication overheads, WUKONG is not able to outperform
Dask (EC2). This is most prevalent in the tree reduction
workload without sleep delays, shown in Figure 7, and when
computing the SVD of a square matrix, shown in Figure 10.

To quantify such I/O overhead, we conduct a detailed
analysis with SVD2, by breaking down WUKONG’s exe-
cution duration into fine-grained factors. Figure 13 shows
a latency distribution of individual tasks in SVD2 of a
50k×50k matrix. We observe that there were a small number
of KV store read and write operations which took upwards
of ten seconds to complete. While a majority of tasks did not
experience such communication overhead, the long network
I/Os experienced by a minority of the tasks have a large
impact on the workload’s overall performance.

In order to estimate the improvement in performance
that WUKONG could obtain if we were to use an ideally-
fast (i.e., fully-optimized) intermediate storage, we executed
a modified variant of SVD2 in which all array data was
randomly generated each time it was used (instead of being
written in and retrieved from the KV store). In Figure 10,
the right-most (yellow-colored) bar shows the performance
of WUKONG with this ideal intermediate storage. While the
performance of Dask (EC2) is still better than WUKONG
(with idea storage) for the smallest workload size, the perfor-
mance is roughly the same in the 25k×25k case. Moreover,
WUKONG (with ideal storage) is able to perform 1.67×
faster than Dask (EC2) for the 50k × 50k workload in this
experiment. As discussed earlier, WUKONG (in its current
form) is already able to outperform Dask (EC2) by over 115
seconds on-average for the largest problem size. When using
an ideal KV store, WUKONG would execute the workload in
95.50% less time than Dask (EC2). These results highlight
the magnitude by which network communication overhead
negatively affects the overall performance of WUKONG.
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Data locality is another key factor which influences the
performance of WUKONG. Increased data locality enables
Task Executors to carry out the workload without needing
to retrieve dependent inputs from the KV Store. This reduces
the communication overhead, thereby increasing the perfor-
mance of the framework. The overall effect of data locality
largely depends on the size of the data values kept in the
Task Executor’s local storage. Our analysis of the network
I/O performance found that the transfer of intermediate data
objects that were tens to hundreds of megabytes in size
were the cause of longer execution times (as opposed to
smaller intermediate data objects). Consequently, WUKONG
is able to utilize the local data stores on Task Executors most
effectively when large objects are stored.
D. Limitations

One limitation of our evaluation is that we did not com-
pare WUKONG against other serverless DAG engines. This
was because all of the systems use different representations
for their DAG’s, and these representations are large and
complicated. Consequently, it is nontrivial to convert a DAG
from one system to another. A comparison between serverful
Dask and WUKONG is possible because they use the same
DAG representation. We are currently investigating DAG
representations of other serverless DAG engines so that we
can make a thorough comparison between WUKONG and
other frameworks and understand the pros and cons of their
design decisions.

VI. CONCLUSION
We have presented WUKONG, a high-performance DAG

engine that implements decentralized scheduling by ex-
ploiting the elasticity and scalability of AWS Lambda to
reduce network I/O overhead and improve data locality.
Our evaluation shows WUKONG is competitive with a tra-
ditional serverful DAG scheduler Dask and demonstrates
that decentralizing task scheduling contributes a significant
portion of the improvement in overall performance. As
part of our future work, we are exploring new techniques
to fundamentally improve the performance of intermediate
storage for serverless DAG workloads.

WUKONG is open sourced and is available at: https:
//github.com/mason-leap-lab/Wukong.
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