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Abstract

With the increasing complexity of memory and storage,
it is important to automate the decision of how to assign
data structures to memory and storage devices. On one
hand, this requires developing models to reconcile ap-
plication access patterns against the limited capacity of
higher-performance devices. On the other, such a model-
ing task demands a set of primitives to build from, and a
toolkit that implements those primitives in a robust, dy-
namic fashion. We focus on the latter problem, and to
that end we present an interface that abstracts the phys-
ical layout of data from the application developer. This
will allow developers focused on optimized data place-
ment to use our abstracta as the basis for their implemen-
tation, while application developers will see a unified,
scalable, and resilient memory environment.

1 Introduction

What was once a few distinct tiers is now a blurred range
of memory and storage hardware with complicated trade-
offs in performance, capacity, and resilience. This trend
is expected to continue, particularly with the push toward
exascale, as the problems posed by memory and storage
latency come into ever-sharper relief. This poses a seri-
ous problem for application developers: the decision of
how to place data structures within a complex array of
memory and storage devices is often subtle, and compar-
atively few of them are the kinds of “hero programmers”
who will muddle through the ambiguity.

Meanwhile, there are efforts to dynamically optimize
the placement of data structures. For example, our col-
laborators are looking at testing the performance of codes
under different mappings of data to devices [1, 2]. For
application developers, it should be easy to use these
data placement optimizations. For runtime developers,
the optimization of data placement requires the ability
to easily run an application under different memory and

storage configurations, so this problem is quite similar
for them.

To satisfy runtime developers and application develop-
ers, we develop an infrastructure to support the mecha-
nisms for the optimization of data placement paired with
a simple API for application developers. We leveraged a
variety of prior work to construct a runtime that, on one
hand, only requires application developers to state their
data in terms of a formal language, and on the other, pro-
vides hooks to allow the details of data structure place-
ment to be specified to any level of detail. The runtime
is specified in two parts: a node-local part that manages
placement of node-local data, and a global-shared part
that automatically reconciles data between nodes. Var-
ious implementation details rely on explicit versioning
of data structures, which, besides making data semantics
clearer, carries side benefits like asynchronous check-
pointing and easy-to-use ghost cells!.

Our primary focus with this work is on functionality
and convenience, but we will also show results to the ef-
fect that, running on real codes, our framework has neg-
ligible effect on performance. Indeed, deploying asyn-
chronous I/O into codes that didn’t have it before, it-
self done with only minor change, drastically improves
checkpoint performance. Nonetheless, our primary focus
is on infrastructure supporting optimized data placement,
so these results are presented primarily as a sanity check.
The work presented in this paper doesn’t include apply-
ing any specific automated data placement, development
of cost models, or online or offline data reorganization.

1“Ghost cells” are cells along the boundaries between different sub-
sets of a large data set. These are used because most grid-based numeric
simulations rely on stencil-style operations, i.e., computing the next
value in a cell based on the current value in neighboring cells. Along
subgrid boundaries, some neighboring cells reside on different nodes,
so these values are typically communicated as an explicit operation at
time step boundaries.



2 Related Work

2.1 ADIOS

The Adaptable 10 System (ADIOS) [3], developed at
Oak Ridge National Laboratory, provides a simplified
storage abstraction which implements a range of I/O
transport methods used by scientific applications. Users
provide an external XML file which outlines data ele-
ments, their types, and the intended method of process-
ing. Currently, ADIOS only supports primitives and
arrays, and must be recompiled whenever static values
(like transport method) have been changed. This pre-
vents the reimplementation of at least one application
(VPIC) used during evaluation. ADIOS also includes
a set of transformation functions which the developer
can use to compress the dataset or reindex arrays when
passing between C and Fortran. While similar to DRepl,
which will be discussed in Section 4.1, it does not sup-
port an entire language to describe the range of possible
transformations.

2.2 Legion

Legion [4, 5], a data-centric programming model devel-
oped by Stanford University, is a library and runtime for
executing applications on distributed parallel systems.
The authors explain in detail how the relationships be-
tween subsets of data can be leveraged to inform deci-
sions about data placement and process scheduling. Es-
sentially, at compile time, Legion maps each computa-
tion step to its dependencies, i.e., the input of one step
is the output of another. Legion then associates each
region of data produced by the application with a spe-
cific computational step. Legion exposes a simple API
for developers to write their own mapper. However, this
is explicitly for CPUs and memory only: Legion pro-
vides no interface for storage access outside of the usual
POSIX functionality. Also, Legion does not implement
optimized data placement, so the runtime cannot dynam-
ically respond to performance.

2.3 DAOS

The Distributed Application Object Storage (DAOS) [6]
layer provides an abstraction between the underlying
hardware and any number of applications, or even more
abstraction. DAOS itself exposes an object/container
interface; the authors have already written an HDF5
interface for the top layer, and intend to replace that
with a filesystem. Meanwhile, within DAOS, intelli-
gent decisions are made which dictate where data are
placed. DAOS also supports versioning and leverages
copy-on-write technology to protect consistent versions.

On its own, DAOS does not fully abstract the I/O stack:
whichever process is interfacing directly with DAOS
must explicitly refer to a storage device when it creates
a storage pool. DAOS also does not track all application
data; rather, it must wait until an explicit object write op-
eration has been issued. Since it is largely event driven
it, it lacks the ability to optimize and refine its data place-
ment strategies during lulls in I/O.

3 Application Programming Interface for
Data Sharing and Storage

Modeling the optimal placement of data structures on
memory and storage devices, generally speaking, pro-
ceeds from scoring allocations on how their placement
impacts the performance of an application. For exam-
ple, one might run an application multiple times with the
same input deck, and with a different data structure in
higher-performance memory each time [1]. The different
execution times, then, provide some insight into the rel-
ative sensitivity of an application’s performance to each
structure.

With a more simplistic approach to measuring and
scoring data structures, one can do the required book-
keeping by hand. For example, if a code has a small
number of data structures of interest, then one can plau-
sibly go through a “static” testing protocol (i.e., a data
structure is or isn’t in higher-performance memory for
an entire run) for a small number of configurations. This
kind of approach generally isn’t scalable, particularly if
one wants to run temporally dynamic tests, i.e., ones in
which data structures are migrated between backing de-
vices at different times in the run.

Thus, more sophisticated modeling approaches would
require a higher-level specification of one’s test-
ing protocols—that one be able to specify tests
algorithmically—as well as a reasonable way of imple-
menting one’s results. This requires that one’s data struc-
tures become “first class,” which is to say, they need to be
specified at the same level of abstraction as one’s model-
ing. This extends not just to the declaration of one’s data,
but to the allocation and management: all of these things
must be explicit in the programming environment.

In summary, we believe that a framework for eas-
ing the development and deployment of optimized data
placement must provide an abstraction over the declara-
tion, initial placement, and continued management of a
code’s important data structures.

3.1 Application Interface

We will discuss our general design in terms of an exam-
ple simulation, shown in Figure 1, which is a simple heat
transfer simulation. It has a 2D grid, which is broken



#define G(x, y) \
(y == -1 7 (ug ? uglx+1] : 0) : (y == ymax ? (bg ? bglx+1] : 0) : \
(x == -1 72 (1g ? 1glyl : 0) : (x == xmax ? (rg ? rglyl : 0) : \
gl(x) * xrange + (y)1))))

#define AVG(a, b, ¢, d, e, f, g, h, i) \
0.28 * a + 0.14 * (b + c +d + e) + 0.04 * (£ + g + h + i
int length = 30, height = 30, nlength = 6, nheight = 5
int main() {
double *g, *ug = NULL, *bg = NULL, *lg = NULL, *rg = NULL;
int x, y, itr;

MPI_INITQ);
MPI_Comm_Rank (MPI_COMM_WORLD, &rank);

if (rank == 0)
create_object ("heatsim", "var grid [length,height] float64", 0);
MPI_Barrier (MPI_COMM_WORLD) ;

xrange = length / nlength;
yrange = height / nheight;
xmin = (rank % xrange) * yrange;
ymin = (rank / xrange) * yrange;

attach("heatsim", "{var grid[x:xrange,y:yrange] = grid[x+xmin,y+min
13", 0, 0, &g);
if (xmin > 0)
attach("heatsim", "{var rank_yghost[x:1,y:yrange] = grid[x+xmin-1,
y+yminl}", 0, 1, &lg);
if (xmin + xrange < length)
attach("heatsim", "{var rank_yghost[x:1,y:yrange] = grid[x+xmin+
xrange ,y+yminl}", 0, 1, &rg);
if (ymin > 0)
attach("heatsim", "{var rank_xghost[x:xrange+2,y:1] = grid[x+xmin
-1,y+ymin-11}", 0, 1, &ug);
if (ymin + xrange < height)
attach("heatsim", "{var rank_xghost[x:xrange+2,y:1] = grid[x+xmin
-1,y+ymi+yrangel}", 0, 1, &bg);

// Initialize g (the simulation grid) with some values

for(itr = 0; itr < 100; itr++) {
for(x = 0; x < xrange; X++)
for(y = 0; y < yrange; y++)
glx*xrange+y] =
AVG(G(x,y), G(x-1,y), G(x+1l,y), G(x,y-1), G(x,y+1),
-1), G(x+1,y-1), G(x-1,y+1), G(x+1,y+1));

G(x-1,y

publish("heatsim", g, itr);

if (1g) reattach("heatsim", 1lg, itr);
if (rg) reattach("heatsim", rg, itr);
if (ug) reattach("heatsim", ug, itr);
if (bg) reattach("heatsim", bg, itr);

Figure 1: A complete example code, showing the creation of
an object (line 24), local data (line 32), ghost cells (lines 33-40),
version updating (line 50), and ghost cell synchronization (lines
51-54). This is a simple, synthetic heat transfer simulation: at
each time step, each cell is updated to be the weighted average
of itself and its eight neighbors.

apart across several MPI ranks, and each cell is updated
to a weighted average of itself and its eight neighbors.
The boundary is treated as an infinite sink, i.e., all bound-
ary values are always 0.

We begin with specifying the code’s important data in
terms of DRepl [7] statements. For example, on line 24,

"var grid [length,height] float64"

This is evaluated in terms of a namespace, heatsim
in this example, to create a data object (i.e., one or more
data structures):

create_object("heatsim",
"var grid [length,height] float64", 0);

A data object is just a description, similar to the role
filled by classes in object-oriented programming. They

serve a role of coordinating definitions across processes
and nodes, but data are actualized in terms of subsets,
which we call fragments. This is a natural if somewhat
obscure formulation, as most important data structures
in distributed codes are shared across nodes, and mak-
ing this local/global distinction explicit aids the rest of
the design. Suffice it to say, a fragment is an actual
data structure, an actual address range, while an object is
the abstractum that fragments are subsets of. Fragments
are backed by memory, while objects describe how frag-
ments relate to each other.

For example, taking xmin and ymin as starting indexes
for some computation on the object grid for a particular
rank of a distributed application, then we define a frag-
ment of grid on line 32 as,

attach("heatsim", "{var grid[x:xrange,y:yrange] =
grid[x+xmin,y+min]}", 0, 0, &g);

The third argument, O in this case, is a version number.
This is done so that we have a coherent way to describe
shared data: data at the current version are still volatile,
while data at previous versions are fixed and safe to read.
More importantly, this provides a straightforward-but-
mechanistic way to know when data transmission should
occur, and when blocking must occur—which is impor-
tant, if we’re to credibly claim to provide a “complete”
abstraction for simulation data.

For example, ghost cells along a left boundary can be
defined, as on line 34,

attach("heatsim", "{var rank_yghost[x:1,y:yrange] =
grid[x+xmin-1,y+yminl}", 0, 1, &lg);

That this is a consumer of shared data is indicated by
the fourth argument, which, when set to 1, makes a frag-
ment read-only. A producer of shared data, on the other
hand, must publish it, on line 50:

publish("heatsim", g, itr);

A consuming attach call will block until the data it
requests have been published by its producer, so in this
sense, as long as the developer keeps the version num-
bers consistent between processes, a publish/subscribe
model of data sharing is automatically implied. This is
one of the most important patterns of distributed simula-
tions: data for a time step is computed from local data
plus ghost cells, then new ghost cell values are broadcast
at time step boundaries. More generally, the pattern of
local computation during a time step and global recon-
ciliation between them accounts for nearly all distributed
simulation data wrangling problems, which is covered by
the publish/subscribe model. This shows how our frame-
work is easy-to-use for typical scientific simulation tasks
concerning data management.



Since attaching and publishing are explicit function
calls, they provide hooks to carry out more specialized
operations. For example, if one is testing the perfor-
mance effect of having a particular data structure on
higher-performance memory, then one could modify the
simulation to take an object name as a command-line ar-
gument, and use the hooks within attach to handle the
placement. So for this example, one can then run tests
without recompiling the code—and, more importantly, a
wrapper script could enumerate all the data structures.

Finally, an instance of automated data placement could
be written as a separate generic library, and could then
be parameterized for a particular simulation by an input
deck. In this sense, this framework should make the op-
timization of data placement simpler.

3.2 Data Object Versions

Versions are used to provide a consistent view of an ob-
ject without explicit global synchronization. Since there
is no single data layout, data is produced and retrieved
at fragment granularity, and since there might be many
replicas of the same data, it is hard to establish what con-
stitute the latest data and whether they are in a consis-
tent state. The most popular approach currently is to en-
code the version of the data in the file(s) produced by
the application and to ensure that all data are written by
global communication between all producer processes.
The effect of global synchronization on application per-
formance will increase even further with the number of
processing elements required for exascale, making the
current solution prohibitively expensive.

Associating versions to the fragment data produced by
each process avoids the global synchronization approach
and allows independent execution progress. The name-
server, as a global service, can keep track of the versions
of all fragments and establish the latest version of the
object as a whole. That is, using versioning makes the
semantics of queries about data more explicit; it forces
developers to confront the fact that data exist in poten-
tially many states, a fact that is reified by a versioning
system.

Additionally, the version attribute can be used by ap-
plications when sharing data between processes. For ex-
ample, a process can wait until data that it needs for the
next step, such as ghost cells/halo regions, is available,
without explicitly knowing which other ranks produce
them. Data maintenance services can wait until all data
for an object are available before persisting it to non-
volatile memory, or for a new version to become avail-
able before deleting an old one.

4 Runtime Framework

4.1 Framework Components

As mentioned in Section 1, our approach leverages sev-
eral preexisting libraries, which we will briefly describe
here.

First, DRepl [7] is a formal language and interpreter
for describing data structures, and for specifying and
evaluating transformations between data layouts. It sup-
ports the ordinary primitive types, as well as arrays and
(non-self-referencing) structured types. The transforma-
tion mechanism allows one to declare a variable to be a
subset of another; for example, an array can be a slice or
stride of another array, and a structure can be a substruc-
ture of another. By using such a system, we can pro-
cess variable declarations in potentially arbitrary ways,
which provides the base mechanism for intervening on
the placement of data.

Its ability to handle transformations provides further
opportunity for optimized data placement. For example,
certain subsets may be indicated as read-only in some
contexts, as is the case with ghost cells. If a runtime
is aware of the relative read and write performance of
each device, it can inform data placement decisions using
DRepl to perform the required transformations.

Second, the required bookkeeping—tracking names
and the locations of their referents—is carried out with
distributed key/value stores. We chose Hop [8], which is
a framework for building such stores; this allows greater
flexibility in the choice of features, to provide a better-
tuned balance between consistency, scalability, and avail-
ability. In particular, Hop can support versioning of en-
tries, which is being used for data object versions, de-
scribed in 3.2.

Third, we employ a modified Linux kernel called
TCASM [9, 10], which supports asynchronous mem-
ory sharing between processes via changes to the msync
system call. TCASM leverages Linux’s copy-on-write
page tracking to reduce the memory overhead needed
to share data and eliminate the need for any synchro-
nization. Applications using TCASM do not need to
even know about each other to work, and since mem-
ory is shared asynchronously, copies are far faster than
user-space memory-sharing methods. This enables fea-
tures such as asynchronous checkpointing and interpro-
cess communication.

4.2 Infrastructure Services

We employ a distributed two-tier architecture: the lower
tier acts as a memory allocator and storage manager for
the node on which it is resident, while the higher tier pro-
vides a global view of the whole computing environment,



Placement

Instructions
Query Results \ __.---=--=uual |
Events g TN
\

Placement .
Instructions ~ Tteeall L _l.--=""
Query Results

Nameserver
Global

Object and
Fragment
Registration

Requests for Updates
Definitions
Publishing

Pointers
To Data

* Application ™,

Placement
Instructions|

Events
Query Results

" Cost Model ™,

Local

< Provided

B} +2222s External

Figure 2: An architectural diagram of on-node runtimes and
global services, as well as the “hooks” provided for local and
global cost models for optimized data placement.

as well as the global storage resources. We will refer to
these persistent services, respectively, as the runtime and
the nameserver. The application then interacts with these
services through the defined API.

The on-node runtime is the key element of our frame-
work. It runs as a separate process and tracks all frag-
ments located on the same node. It can interface with
other on-node runtime instances over the local network
and uses the nameserver to locate the runtime responsi-
ble for data fragments that are not locally available, e.g.,
when it needs to read data from a newly-created frag-
ment. It also registers locally-produced fragments into
the nameserver so they can be found by other runtime
instances that need the data. The runtime is designed to
interface with any available storage medium (e.g., tradi-
tional file systems, NVM, remote storage). It tracks all
data fragments physically stored on media available to its
host and provides hooks to other services for optimizing
data placement, replication, and persistence.

We do not require applications to use our runtime to
manage all data; for example, an application may allo-
cate only certain data structures via our runtime, while
using traditional system calls to manage some file I/O.
However, to achieve the full range of functionality and
portability we offer, applications should use the runtime
for all significant allocations. In particular, any data that
need to be persisted (either as output or checkpoint) or
shared between processes should be managed by our run-
time.

The upper tier, the nameserver, is responsible for
tracking all allocations across all runtimes. The name-
server keeps track of all data objects (i.e., abstract con-
tainers), their fragments, and how many versions there
are of each fragment. The nameserver allows creation
of objects and fragments, and provides information on
how to produce new fragment data from the preexisting
fragments. It is aware of what objects and fragments are

created as well as the locations of the fragments’ data,
but doesn’t participate in the actual movement or trans-
formation of data that may be required by reads or writes.

The nameserver is currently a single process, but the
infrastructure supports a distributed implementation. It
may live on a set of compute nodes, alongside runtimes,
or it may reside on a distinct partition of nodes entirely.
The nameserver maintains a database where it stores the
metadata on each allocation across the whole system. Its
primary function is to service queries from the runtimes
about data managed by other runtimes.

4.3 Details of Runtime Operation

The operation of the nameserver is fairly straightforward:
It is a key/value service implemented in Hop [8], which
primarily serves to index fragments. This is important,
because fragments can be arbitrarily diffused through-
out a computing environment, i.e., a particular fragment
could reside on any node in a cluster. If a process needs
to access a particular fragment, it needs to know where
to look. Thus, the nameserver implements typical key/-
value operations: creation, update, query, and removal of
objects and fragments. Its most important operation is
the ability to specify a fragment which could, itself, be
a union and intersection of several other fragments, and
get back the locations of the source fragments and the
DRepl transformation rules that convert the source frag-
ments into the desired fragment. The nameserver there-
fore does most of the background work required to as-
semble a fragment from a potentially-heterogeneous col-
lection of source fragments from its providers (i.e., the
processes or nodes that computed the data), a task of
which computing ghost cells and collating data for out-
put to a single file are two simple examples.

The lion’s share of this work resides in our runtime,
which manages data that are local to a node. While the
nameserver maintains and provides information—for ex-
ample, about the steps required to create a fragment from
other fragments—it is the runtime that actually carries
out the work. Thus, on one hand, it communicates with
the nameserver to register its objects and fragments and
to find others’ objects and fragments, and on the other,
it communicates with other runtimes in order to retrieve
and transmit actual data to materialize fragments to ser-
vice applications’ needs.

Besides the three operations implied in Figure 1—
creating, attaching, and publishing fragments—there are
two more important functions of the runtime. First, run-
times can detach a fragment, which will delete then frag-
ment when there are no more references to the data. Sec-
ond, a runtime can receive DRepl transformation rules,
in which case it will apply those rules to a copy of the in-
volved fragments and return the data in a compact inter-



mediate format. The second function is used by runtimes
on other nodes for materializing a fragment locally.

TCASM is used for efficient and consistent sharing of
fragments’ data between a runtime and its local applica-
tions. By versioning data, with the rules that prior ver-
sions are read-only and data are only shared after they
have been rendered read-only, it is always safe to trans-
mit data asynchronously. TCASM provides the machin-
ery for this operation: publishing a fragment, and there-
fore incrementing its version, prompts the kernel to copy
the relevant page on the next write, so that the existing
page contains the previous version.

This all comes together to implement a persistent
framework of services that the application interacts with
to optimize and store application data. As an illustrative
example: the application creates a fragment, this frag-
ment is handed to the on-node runtime, the runtime reg-
isters this fragment with the global nameserver, and the
on-node data-mover of the runtime queries a cost model
to determine placement the data on the appropriate stor-
age media, as depicted in Figure 2.

5 Results

As the system is not intended to adversely affect the per-
formance of applications, results are focused on demon-
strating the lack of overhead incurred. In addition to test-
ing the system separately, we selected two use cases that
are representative of a range of scientific applications for
the system, to demonstrate the range of functionality and
ease of development required for their implementation.
We used two preexisting codes: SNAP [11], a proxy ap-
plication that represents a deterministic neutral-particle
transport simulation written in modern FORTRAN, and
VPIC [12, 13, 14], a general-purpose particle-in-cell
simulation for modeling kinetic plasmas in one, two, or
three spatial dimensions written in C++. For all exper-
iments, the setup includes running a single runtime on
each node as a separate process, as well as running a sin-
gle instance of the nameserver on one of the nodes.

Name Processor Cores Network Nodes DRAM
Memdeep  Intel E5-2660 20 Ethernet 1 64 GB
CADDY Intel ES-2670 16 IB-QDR 150 32GB

Table 1: Experimental environments

The first experiment quantifies the time required to in-
voke the key functions: create_object, attach, and
publish. To this end, we wrote a simple benchmark
which first spawns a number of process, indicated by the
x-axis on Figure 3. Processes are packed 16 per node,
and each simultaneously creates 1,000 objects, record-
ing the elapsed time. Since objects are the main meta-
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Figure 3: Average return time of select runtime operations:
create_obj defines the global dataset for this application, i.e.
the object; attach defines and initializes local variables (re-
ferred to as fragments) as subsets of the global dataset; finally
the application uses publish to notify the runtime when it has
finished a new version of an previously attached fragment.

data structure indexed by the nameserver, all entries com-
pete for access, resulting in the highest contention of all
operations. After the creation of the objects was con-
cluded, each of the processes then performed attach
1,000 times for each of the 1,000 objects they had just
created. Creating and attaching to fragments requires up-
dating the object metadata structure, though only the ob-
ject of interest needs to be locked, resulting in less, but
still some, contention. However, it also requires memory
allocation at the node level. In the end, these qualities
balance out, resulting in roughly the same performance:
20,000 operations per second for both create_object
and attach. Finally, all the attached fragments are it-
erated over, in order to populate the dataset with dirty
pages. All processes block until they have finished writ-
ing and call publish, simultaneously. Publishing a new
fragment version requires both a call to msync and an up-
date to the metadata stored in both the runtimes and the
nameservers. However, the majority of updates are made
to a fragment, which is quite fast. Again, due the gran-
ularity of the update, publishing fragments requires the
least overhead, performing operations at nearly 140,000
per second. The results of this experiment are shown in
Figure 3. This rate is adequate, which will be shown in
the application results: the overhead did not impact per-
formance of real applications. VPIC, specifically, was
under 20K calls to attach per second. Further opti-
mization of these services can be addressed should new
application requirements demand it.

To measure the memory overhead incurred by the
runtime on a known mini-application, a single node,
Memdeep (see Table 1), was used to run a series of
MPI jobs with 20 ranks, using about 50% of its DRAM.



SNAP Run Time(s)
Original 850
RT/NS 925

Table 2: SNAP’s runtime compared SNAP implemented to
use the runtime to allocated and publish application data on a
single node, 16 processes and no file I/O.

Ranks were pinned to single cores and allowed to spawn
two OpenMP threads, to make use of the Xeon’s hyper-
threading. The results of this experiment are recorded
in Table 2. In total, the system incurs about 8% per-
formance overhead, or 72 seconds. Based on prior ex-
periments with TCASM [9], the overhead is likely due
to the copying-on-write mechanism. In the worst-case
case scenario, an application may write to each page
of its allocation, effectively doubling its memory foot-
print. However, as TCASM allows developers to de-
fine data of interest, it is unlikely the entire application
would be allocated via TCASM’s allocator. Depending
on the use case, the amount memory handled by TCASM
can vary significantly. It is also noteworthy that the per-
formance of TCASM is heavily affected by the access
patterns of the applications, primarily the percentage of
pages touched between calls to msync.

Since the primary focus of the system is memory and
storage management, a use case was selected to highlight
its ability to persist coherent datasets. First, SNAP was
modified to use the runtimes to allocate all data necessary
to perform a checkpoint/restart, and publish versions of
this data at regular intervals using the time_step vari-
able as the version number. Second, the original SNAP
code was modified to use the collective MPI_IO read and
write functionality to checkpoint and restart the same set
of data. Intervals of 4 and 8 time steps were chosen to
write the checkpoint, performed by a collective MPI_IO
write operation in the latter case and a coordinated effort
by the runtimes and the nameserver in the former. Full
restarts were performed as sanity checks for both imple-
mentations.

Experiments were conducted with both implementa-
tions deployed on Memdeep. Since it includes a SATA
SSD and an NVMe device, the experiment was repeated
using each medium as the final destination of the persis-
tent datasets. The results of these experiments are shown
in Figure 4.

The greatest performance increase was achieved when
persisting checkpoints on a spinning hard disk. The
runtime/nameserver (RT/NS) implementation of SNAP’s
checkpoint finished 11 minutes faster than the MPI_IO
inline checkpoint. By switching to the SATA SSD, the
runtime saw its performance remain steady, while the
application’s total execution time improved by 8.5 min-
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Figure 4: SNAP Three Ways: The original out-of-box release
was used as a baseline to compare the modified implementa-
tions; the Application checkpoint implementation has all the
1/0 operations contained with one function which uses MPI_1IO
to coordinate the collective file write; and RT/NS implementa-
tion uses the on-node runtime to allocate and publish its dataset
offloading the actual file I/O to the runtime process.

utes. The final experiment, done on the NVMe device,
saw further improvement for application checkpointing,
but only about 40 second while the runtime’s checkpoint
was unchanged.

We see our system performs at the same level regard-
less of the medium, this is mainly due to TCASM’s con-
tribution to the system: asynchronous I/O, which allows
the application to continue uninterrupted while the run-
time performs the checkpoint. Meanwhile, the traditional
in-line checkpoint function requires a blocking write, so
that no sensitive data may be modified before the check-
point is finished.
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Figure 5: Overhead imparted by the runtime: The execution
times of the original SNAP are compared to those of SNAP
ported to RT/NS, for all available input decks.

Next, the generic, runtime, and MPI_IO implementa-
tions were deployed at scale using 128 compute nodes
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Figure 6: The MPLIO library was used to implement a collec-
tive checkpoint function tuned to the Lustre filesystem’s config-
uration, which is compared to the RT/NS SNAP with the same
set of input and configuration as in Figure 5 with the persist
feature has been turned on.

from a Linux cluster named Caddy (see Table 1). Caddy
uses the SLURM resource manager to allocate nodes and
invoke MPI jobs. All compute nodes are attached to a
parallel Lustre filesystem, which was used for storing all
checkpoints. For this reason, the MPI_IO implementa-
tion was tuned to use the lustre fs MPI component.
Packing MPI jobs up 16 to a node (1 rank per core), the
problem size was incrementally increased to 2048 cores
across 128 nodes. Figure 5 compares the execution times
of unmodified SNAP against the one using the distributed
runtime and nameserver in order to demonstrate the sys-
tem’s performance overhead at scale. As in the single
node experiments, overhead incurred by the use of the
runtimes and nameserver to allocate and track data was
minimal. In the worst case (2048 nodes), the use of our
system only added about 40 seconds (or about 11%) to
the total execution time.

Figure 6 shows the same experiments, except compar-
ing the MPI_IO SNAP to the RT/NS SNAP implemen-
tation with the persist feature activated. For fairness,
the times reported include any extra time the runtimes
needed to finish the checkpoints asynchronously if SNAP
finished while the runtimes were waiting on the write op-
eration to complete.

Due to TCASM’s asynchronous consistency guaran-
tees, the runtime/nameserver implementation of check-
pointing in SNAP, from the application developer’s per-
spective, amounts to a memory update operation (msync)
and a local interprocess message (publish), allowing
the computational work of all 2048 processes proceed
immediately. Even with MPI_IO’s Lustre component
tuned to Caddy’s Lustre filesystem, the flushing, pro-
cess synchronization, and blocking required to write the
checkpoint incurs significant overhead. During the larger

experiment (2048 ranks across 128 nodes), the difference
in execution time reported by the MPI_IO implementa-
tion was 6.5 times that of the version which leveraged the
runtime and nameserver for persistence (over one hour
vs. roughly 8 minutes).
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Figure 7: Each experiment begins with N ranks of RT/NS
SNAP, which all exit after they publish each of their fragments
at the end of the first iteration. Next, N SNAP ranks restart,
attaching to the previously published fragments. The red line
indicates the time SNAP took to restart only. For the rest of
the experiment, the number of MPI processes was halved and
quartered to draw the green and blue lines respectively. The re-
sulting graph shows how long is required to repartition SNAP’s
datasets, enabling it to restart with fewer nodes than it origi-
nally had at start up.

In keeping with our theme for a foundation for auto-
mated data placement, we designed an experiment that
would allow an application to checkpoint on N ranks and
then restart on M ranks to show the runtime’s ability, to
abstract away the underling details of the supercomputer.

The experiment leverages DRepl’s ability to transform
datasets without explicit intervention to restart a simu-
lation using a different system configuration. Consider
a compute cluster with N cores, running an experiment
with 1 rank per core. At any point during an experiment’s
execution, some number of nodes could fail, leaving
fewer than N cores available. The system allows the orig-
inal dataset (partitioned for N ranks) to be repartitioned
to the remaining cores. SNAP is a particularly useful ap-
plication to demonstrate this, as its input deck defines all
its global structures, which SNAP divides among pro-
cesses at allocation time. Our SNAP implementation
uses the runtime to allocate data structures, first defin-
ing the global arrays during create_object and then
defining subsets of each global array within each pro-
cess. Thus no additional modifications were required to
restart with fewer or more processes than originally indi-
cated, even if data from some nodes ends up on different
nodes than where it was originally allocated.

Figure 7 shows the explicit data allocation costs for



N ranks, repartitioned to N, N/2, and N/4 ranks. Note
that N-to-N partitioning requires runtimes to register new
data with the nameserver and construct allocations to the
specifications provided by DRepl. In each experiment,
the process binding scheme was reorganized so that no
process was assigned to the node where its allocations
were already stored, requiring explicit internode trans-
fers to build the datasets.
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Figure 8: Unmodified VPIC comes with its own I/O function-
ality which it uses to write its output and checkpoints to per-
sistent storage. We compare VPIC’s native performance (VPIC
I/0) against VPIC implemented to use the runtime and name-
server with and without persistence activated (RT/NS No I/O
and RT/NS /O respectively)

Finally, in order to demonstrate the system’s efficacy
with another modern application, VPIC’s existing I/O
operations were replaced with calls to the node local run-
time API. VPIC has flexible support for saving its data at
custom intervals. Starting from an existing VPIC input
deck, we added support for weak scaling and the ability
to use the local runtimes for data allocation and manage-
ment.

Figure 8 depicts the relative performance of the new
VPIC implementation. “VPIC I/O” refers to the original
VPIC implementation with the existing I/O functional-
ity activated in the input deck. “RT/NS” refers to the
VPIC implementation which uses the runtimes to allo-
cate data but no I/O is issued. “RT/NS I/O” refers to
the same runtime data allocation implementation but file
I/O is issued through the runtime/nameserver interface.
The y-axis represents the overhead of the experiments
as compared to running VPIC with the same input pa-
rameters, but without any I/O being performed. As with
previous applications, the overhead of using the runtime
for just memory allocations and fragment publishing is
negligible. Adding I/O to the runtime increases the over-
head to about 75% in the largest experiment, while the
existing VPIC I/O functions nearly doubled the runtime
of the original. Our modifications perform better than

the default I/O, mostly due to the runtime’s support for
asynchronous I/0O.

6 Future Work

As we have primarily described a middle layer between
applications and optimized data placement, we are pur-
suing two directions of future work. On one side, to show
the applicability of this interface to real-world simula-
tions, we are working on modifying the Energy Exas-
cale Earth System Model (E3SM), formerly known as
Accelerated Climate Modeling for Energy (ACME), to
use our code. This is the Department of Energy’s next-
generation coupled climate science simulation which,
from the data perspective, is based on an unstructured
(Voronoi) mesh. Besides being important to climate sci-
ence, its multiscale mesh presents unique challenges for
a storage abstraction.

On the other side, we are continuing our collabora-
tion with computer scientists studying memory hierar-
chy performance and data migration. They are currently
engaged in prototypical work, but once they feel they
have refined their methods enough for deployment on
real codes, we will be prepared to support those efforts.
Our goal is to converge these two sides, to ultimately
run relevant, large-scale simulations with their memory
and storage subsystems automated, with the help of our
framework.

7 Conclusion

We have described an interface between applications and
data structure placement decision processes, the most
prominent of which are based on memory hierarchy and
storage performance trade-offs. On the application de-
velopment side, this is based on “lifting” data declara-
tions to runtime, via an interpreted data description lan-
guage, and high-level functions which abstract the typi-
cal scientific simulation data flow, and provide hooks into
the allocation and transmission functions.

We showed that, for developers, the resulting APT is
easy to fit into an existing code, and is reasonably ag-
nostic to the type of code and the structuring of the data.
Furthermore, because our runtime automatically makes
use of asynchronous I/0, it is easy to, for example, re-
duce synchronization overhead for codes that need to ex-
change boundary information between time steps. We
also showed that this convenience and flexibility does
not meaningfully impact the performance of modified
codes, and can in fact drastically improve performance
by bringing asynchronous I/O to codes that didn’t have it
before without any extra development effort.
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