
DeltaFS: Exascale File Systems Scale Better
Without Dedicated Servers

Qing Zheng1, Kai Ren1, Garth Gibson1, Bradley W. Settlemyer2, Gary Grider2
1Carnegie Mellon University

2Los Alamos National Laboratory
Email: {zhengq, kair, garth} @ cs.cmu.edu

{bws, ggrider} @ lanl.gov

ABSTRACT
High performance computing fault tolerance depends on scal-
able parallel file system performance. For more than a decade
scalable bandwidth has been available from the object stor-
age systems that underlie modern parallel file systems, and
recently we have seen demonstrations of scalable parallel
metadata using dynamic partitioning of the namespace over
multiple metadata servers. But even these scalable parallel
file systems require significant numbers of dedicated servers,
and some workloads still experience bottlenecks. We envi-
sion exascale parallel file systems that do not have any ded-
icated server machines. Instead a parallel job instantiates a
file system namespace service in client middleware that oper-
ates on only scalable object storage and communicates with
other jobs by sharing or publishing namespace snapshots.
Experiments shows that our serverless file system design,
DeltaFS, performs metadata operations orders of magnitude
faster than traditional file system architectures.

1. INTRODUCTION
HPC clusters are traditionally tiered as separate sets of

compute and storage nodes, providing massive numbers of
CPU cores, low-latency interconnects, as well as fast con-
current data bandwidth typically managed by an underly-
ing parallel file system[1]. Because of the long-standing I/O
challenges imposed by the checkpoint-based fault-tolerance
commonly adopted by batch applications, an additional layer
of burst-buffer nodes are being deployed in new HPC clusters
to capture and forward bursty checkpoint data in high-end
flash devices[2–4]. Most HPC clusters also include a small
set of head nodes to serve as dedicated resources for the
metadata path of an underlying parallel file system, usually
Lustre[5], GPFS[6], PanFS[7], or PVFS[8]. In this paper,
we refer to this classic HPC setting as the “Lustre” model.

With only a single or a few metadata servers, HPC ap-
plications running on massive-scale computing clusters[2, 9]
often experience significant bottlenecks when accessing the
file system namespace, therefore wasting a large number of

c© 2015 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
PDSW2015, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-4008-3/15/11...$15.00

DOI: http://dx.doi.org/10.1145/2834976.2834984.

Compute Nodes
(10,000+)

LustreFS
MDS

Burst-Buffer Nodes
(100)

App

DeltaFS

App

DeltaFS

Pooled Storage Nodes

Head Node
(1)

App

App

App

App

IndexFS
MDS

IndexFS
MDS

IndexFS
MDS

Figure 1: A typical HPC cluster consisting of compute,
storage, head, and burst-buffer nodes under different system
models: centralized LustreFS server, partitioned IndexFS
servers, or fully decentralized DeltaFS. While Lustre and In-
dexFS requires dedicated metadata servers, DeltaFS allows
each application to instantiate a private namespace on com-
pute nodes and self-manage its metadata on storage nodes.

CPU cycles while blocking on file system metadata opera-
tions[10, 11]. Trying to alleviate this metadata bottleneck,
a couple of recent file systems have demonstrated scalable
performance in metadata through dynamic namespace par-
titioning over a large collection of metadata servers[12–15].
As an example from our previous work, IndexFS [15] can
be deployed on top of a subset of burst-buffer nodes with
each node serving as a dedicated machine holding a piece of
the global file system namespace. Unfortunately, with this
“IndexFS” model, a potentially large number of machines
must constantly be reserved in order for the system to be
ready for an envisioned peak metadata demand. Even if the
right number of metadata servers can be known before-hand,
dedicated machines can easily isolate a considerable amount
of hardware resources that could be better utilized running
user jobs. This increases the cost of building HPC clusters.

1.1 DeltaFS Vision
Because access to a global namespace typically requires

centralized serializable coordination with dedicated resources
and is all too often a performance bottleneck, designing a
file system without a global namespace and without any
dedicated metadata servers should, in principle, enable the
system to grow to much larger scales in a more cost-effective
way. In BatchFS [16], our prior extension to IndexFS, each
file system client is able to instantiate a private namespace in
a snapshot of the global namespace and obtain capabilities
to pre-execute metadata operations directly in that private
namespace. At a later point, a client would choose to submit
changes to its private namespace to the global namespace to

1

merge updates through a single bulk insertion operation[16].
We showed that this asynchronous mechanism can afford a
batch job the ability to efficiently execute a huge set of con-
current metadata operations with only a small interaction
with centralized metadata servers, which is particularly use-
ful for achieving high-performance checkpointing[16–19].

Encouraged by BatchFS, in this paper we propose a new
(and more extreme) file system metadata design, DeltaFS,
which departs from BatchFS by not defining even an asyn-
chronously updated global namespace. Rather than push-
ing changes in every private namespace back to a central-
ized controller to serialize metadata updates and enforce
global semantics, DeltaFS uses a registration service to in-
dex different materialized file system views and allow appli-
cations to publish and lookup namespace snapshots that are
individually-consistent, loosely-coupled, with each ready to
be combined1 with other snapshots to form new file system
views. DeltaFS is envisioned to have the following features:

• Serverless design featuring zero dedicated metadata servers,
no global file system namespace, and no ground truth;

• Client-funded metadata service harnessing compute nodes
to handle metadata and achieve highly agile scalability;

• Freedom from unjustified synchronization among HPC ap-
plications that do not need to use the file system to com-
municate;

• Write-optimized LSM-based[20] metadata representation
with file system namespace snapshots as the basis of inter-
job data sharing and workflow execution;

• A file system as no more than a thin service composed by
each application at runtime to provide a temporary view of
a private namespace backed by a stack of immutable snap-
shots and a collection of shared data objects;

• Simplified data center storage consisting of multiple inde-
pendent underlying object stores, providing flat namespaces
of data objects, and oblivious of file system semantics.

DeltaFS is a work-in-progress. In this paper, we present
its high-level design and characterize its performance. In
Section 2 and 3, we show DeltaFS’s metadata architecture
and runtime interaction advantages. In Section 4, we show
preliminary experimental results. Finally, we discuss related
work and draw conclusions in Section 5 and 6.

2. SYSTEM DESIGN
Decoupling data from metadata management[7, 21, 22],

DeltaFS is designed as file system metadata middleware cre-
ated on-demand on top of an underlying storage infrastruc-
ture that stores file data and handles I/O operations. All
metadata operations are executed directly in DeltaFS, which
internally reuses the data path provided by the shared un-
derlying storage to store file system metadata. While one
can use a parallel file system to serve as the underlying stor-
age, DeltaFS expects no more than a set of global object
stores2 each exposing a flat namespace of data objects[23].
A single DeltaFS namespace can name objects in different

1 With all conflicts reconciled on demand (§2.3).
2 DeltaFS today requires object stores that provide “multi-
writes” or “non-transactional appends”; however, given only
a “single-write” or “PUT” interface, we could emulate “ap-
pends” with deep buffers and a naming convention.

object stores without requiring the stores to know about
each other. This enables diverse and changing object store
deployments within a single HPC data center.

In order to better harness the computation and intercon-
nect resources on compute nodes, DeltaFS enables batch ap-
plications to manage their own namespaces and avoid unnec-
essary coordination. DeltaFS user library code linked into
each batch application process constitutes a private meta-
data server, which can be viewed as a full-fledged but embed-
ded metadata server capable of executing namespace opera-
tions and writing journals of metadata mutations (relative to
an initial namespace snapshot) to represent and record up-
dates3 (§3.1). Batch applications obtain an input namespace
by collecting appropriate namespace snapshots from public
registration services (possibly the result of an application-
informed search predicate), and publish their output results
as new snapshots ready to be consumed by future applica-
tions. Publication and subsequent collection can be deferred
and aggregated by an integrated job scheduler that executes
workflows and manages cluster resources (§2.2).

In lieu of the traditional“global namespace”, DeltaFS uses
one or more external namespace registries to serve as repos-
itories of shared file system snapshots. The insertion, dele-
tion, and selection of snapshots from these registries cap-
tures the true communication and synchronization between
unrelated applications. DeltaFS is not designed for interac-
tive processes that use the file system as an OLTP database
to implement inter-process communication. “Almost-batch”
processes in need of some anonymous synchronization should
seek a mechanism outside the file system to communicate
(e.g. by passing messages or tokens, or using a coordination
service[24]). Figure 1 shows our“DeltaFS”model, along with
the “IndexFS” and the “Lustre” model discussed earlier.

2.1 Metadata Representation
DeltaFS represents namespace metadata as ordered key-

value pairs that are managed by LevelDB[25] using LSM-
trees implemented on storage as SSTables (Sorted String
Tables). Each SSTable stores a range of immutable and in-
dexed key-value entries and serves as the physical format for
metadata migration and aggregation[15, 16]. SSTables are
ordered with entries in newer tables superseding entries in
older ones. In DeltaFS, each file system snapshot is directly
represented as a set of SSTables. Snapshots are essentially
“copy-on-write” data structures with each one built on top
of prior tables using a set of new SSTables to hold overriding
entries – the “delta” of the two. Every DeltaFS application
uses an initial snapshot to bootstrap, and will typically gen-
erate a new snapshot as a child before terminating. As such,
snapshots can be thought of as nodes in a snapshot tree.

2.2 Namespace Propagation
Instead of synchronizing with a centralized metadata ser-

vice implementing serializable transactions on a single file
system namespace, unrelated applications in DeltaFS com-
municate with each other through published file system snap-
shots (generally only at the beginning and end of each ap-
plication or workflow run). Allowing applications to explic-
itly control namespace visibility and timings for communica-
tion effectively confines the synchronization scope to a com-
plete application run and avoids the unnecessary resource

3 Snapshots are essentially aggregations of metadata jour-
nals generated by a series of previous applications (§2.1).

2

Type-II App

client-server RPC

concurrent regional compaction

S1

SST

S2

SST

S3

SST

P1 P2 P3

ManifestSST
SST

Type-I App

P1

S1

SST

P2

S2

SST

P3

S3

SST

ManifestSST
SST

a single global compaction

au
xi

lia
ry

 m
et

ad
at

a
se

rv
er

pr
iv

at
e

m
et

ad
at

a
se

rv
er

Figure 2: A DeltaFS app runs either with private metadata
servers generating a set of overlapping outputs (left), or aux-
iliary metadata servers holding partitioned outputs (right).

contention associated with shared coordinators. Instead of
implementing a global catalog holding all registered snap-
shots, DeltaFS employs multiple available, fault-tolerant,
scalable registries to serve as external indices for snapshpts.
These registries can be implemented as key-value stores[26,
27], replicated databases[24, 28], directory services[29, 30],
or simply as command-line arguments that directly spec-
ify which snapshots to use. This avoids introducing another
centralized service unnecessarily, and enables flexible system
integration. For example, batch jobs may take advantage of
an integrated scheduler to automate workflow execution, re-
source allocation, and namespace propagation.

2.3 No Ground Truth
Unlike traditional file systems that expose a single names-

pace with all its metadata owned by dedicated servers to pro-
vide the “ground truth”, DeltaFS offers no ultimate truth4,
but only a collection of file system snapshots that applica-
tions could use as “facts” to construct their own namespace
views. In doing so, each application loads and merges a set
of snapshots5, detects and resolves conflicts on-demand, and
creates a new namespace view that is consistent with its own
reconciliation policy[31], such as the“last-writer-wins” rule.

3. APPLICATION EXECUTION
A DeltaFS cluster consists of one or more object storage

platforms running on storage nodes and a large collection of
compute nodes hosting one or more unrelated batch appli-
cations. Unrelated applications coordinate their namespace
metadata with assistance from a public registration service
that provides snapshot propagation. With shared access to
file system metadata stored as snapshots in the underly-
ing storage infrastructure, a DeltaFS application is able to
retrieve existing file system objects and perform metadata
operations independent of and in parallel with metadata ac-
tivities concurrently performed by other applications. With
two alternative namespace partitioning strategies and their
corresponding metadata key distributions, a DeltaFS appli-
cation either links to a user library that serves as a private
metadata service (§3.1), or initializes a set of auxiliary meta-
data servers to provide application-wise metadata coordina-
tion with dynamic namespace partitioning (§3.2).

3.1 Overlapping Sub-namespaces (Type-I)
4 And there are no dedicated services to enforce such truth.
5 See our BatchFS [16] paper for a discussion on security.

As is illustrated in Figure 2, a Type-I application is made
up of a set of non-communicating (but related) processes
using their own embedded private metadata service to inde-
pendently execute metadata operations. Each process reads
from a set of input snapshots, and performs metadata mu-
tations on them as part of the computation. This yields a
collection of mutually-isolated sub-namespaces that the ap-
plication programmer constructs to have no metadata key
collisions. The snapshot generated by a Type-I application
can be seen as an union of all its sub-namespace snapshots,
with each stored as a different set of SSTables with possi-
bly overlapping key ranges. While enabling very fast write-
intensive workloads, a later reader of a Type-I application
snapshot may have to search many SSTables in order to find
any specific metadata key. To avoid this read amplification,
a “compaction” job[25, 27] could be launched to merge, shuf-
fle, and repartition metadata records, yielding a new set of
SSTables with globally non-overlapping key ranges. This en-
sures a single SSTable access for each metadata key lookup.

3.2 Partitioned Sub-namespaces (Type-II)
Unlike Type-I applications, each process in a Type-II ap-

plication continuously maintains a consistent, partitioned
view of the entire application namespace, typically because
each process sometimes requires immediate access to meta-
data produced by other processes in the middle of a run[32].
Therefore, Type-II applications are assisted by temporary
metadata machinery (auxiliary metadata service[15]) serv-
ing the same function as traditional IndexFS servers: provid-
ing scalable and synchronous metadata access (exclusively to
the processes of that application) through dynamic names-
pace partitioning. As can be seen in Figure 2, every Type-II
application process communicates with a private set of aux-
iliary metadata servers to execute namespace operations6.

Through dynamic namespace partitioning, the final snap-
shots generated by Type-II applications are each comprised
of sub-namespaces featuring pre-partitioned keys. As such,
each metadata key can only appear in the SSTables of a sin-
gle sub-namespace, whose key ranges do not overlap other
sub-namespaces. To eliminate read amplification altogether,
a local “compaction” can be launched concurrently on each
sub-namespace, producing a new set of SSTables whose non-
overlapping key ranges are global to the entire application.

4. MEASUREMENTS
In this section, we report experiments done on a DeltaFS

extension of IndexFS [15] to show the promise of our server-
less design. All our experiments were performed on a 125-
machine cluster consisting of one head node, 16 storage
nodes, and 108 compute nodes. Each machine was equipped
with 4 quad-core CPUs with 2GB of RAM per core, one
20Gb/s Infiniband link, and one HDD disk holding a Linux
OS. All resources were part of the Nome[33] testbed oper-
ated by NSF PRObE[34]. The shared underlying storage
supporting IndexFS was implemented by Ceph RADOS[23]
as 64 OSDs (object storage devices) on 16 storage nodes7.
Each OSD was built on a local file system (XFS) mounted

6 While we expect many jobs to be Type-I, it may be worth-
while for a Type-I job to execute as a Type-II, especially if
a read-intensive phase is known to be needed soon (§4.2).
7 To run IndexFS on Ceph RADOS (or other object stores),
we have implemented a shim layer to translate POSIX file
system calls invoked from LevelDB to RADOS requests.

3

8 M Files

128 M Files

512 M Files

0.05 M
ops/s

0.62 M
ops/s

19.69 M
ops/s

0

120

240

360

480

600

0

5

10

15

20

25

IndexFS_1S IndexFS_16S "DeltaFS"

To
ta

l F
ile

s
C

re
at

ed
 –

M
 F

ile
s

E
m

pt
y

F
ile

 C
re

at
es

 –
M

 o
ps

/s

64 Client Machines

(a) A job dumping output

0.05

0.63

0.85

0.05

0.66

1.12

0.05

0.68

1.64

0.05

0.69

1.90

0.05

0.70

2.13

0.039

0.0240.041

0.0210.042

0.0230.043

0.0210.044

0.020

0

0.5

1

1.5

2

2.5

IndexFS_1S IndexFS_16S "DeltaFS"

F
ile

 S
ta

ts
 –

M
 o

ps
/s

35 53 71 89 107 Client Machines

(b) A 2nd job loading input

Figure 3: Performance of three IndexFS deployments creat-
ing and stating files within a single directory. Fig. (b) shows
both aggregated and per-node throughput. DeltaFS auxiliary
metadata servers appear to be less efficient because of over-
provisioning relative to the number of requesting clients.

on a RAM disk so as to emulate the performance of a fast
backend flash or disk array. In total, IndexFS was provided
with 256GB for SSTable storage, with each SSTable snappy-
compressed[25] and stored as a single RADOS object.

4.1 Traditional v.s. Serverless Architecture
We used three differently configured IndexFS deployments

to demonstrate the scalability of our “DeltaFS” design as
compared to the widely-used “Lustre” design (a single dedi-
cated metadata server) and the recently published“IndexFS”
design (a large number of dedicated metadata servers). We
ran eight IndexFS metadata processes on one head node to
emulate a non-partitioned “Lustre” metadata service run-
ning on a single machine. To evaluate our “IndexFS” model,
we started 128 IndexFS metadata processes evenly spread
across 16 storage nodes. To implement our“DeltaFS”model,
we only ran a single IndexFS metadata process on the head
node since all metadata operations would be handled by“pri-
vate metadata servers” embedded inside each client process.
In all cases, we had 512 IndexFS client processes evenly dis-
tributed on 64 compute nodes. For “DeltaFS”, we enabled
IndexFS bulk insertion8 at all clients so that they would
behave as simplified DeltaFS private metadata servers.

Figure 3a shows the performance of the three IndexFS
deployments performing empty file creations under a shared
directory. IndexFS with 16 metadata server machines was
an order of magnitude faster than IndexFS running on a
single machine, mostly by consuming an order of magnitude
more dedicated resources. While more files were actually
created, “DeltaFS” managed to deliver another two orders
of magnitude of throughput because 1) it enjoyed a shorter
metadata path involving only private metadata servers that
avoided the use of RPC; 2) its serverless design effectively
moved metadata serving from dedicated servers to client ma-
chines so more hardware resources were used; and 3) its
metadata output was left un-partitioned and un-compacted
with an assumption that a later compaction job would “fix”
the output in a single pass (this is discussed further in §4.2).

Figure 3b shows a performance comparison among five
distinct-sized jobs (running on 35-107 client machines) ran-
domly accessing metadata generated by the preceding job

8 IndexFS can delegate authority of an empty directory to a
set of cooperating clients as leases to drive efficient metadata
execution and aggressive client-side batching[15].

0

60

120

180

240

300

360

420

480

Type-I Type-II

T
im

e
(s

ec
s)

Execution Mode

Compaction Time

Flush Time

Run Time

(a) Type I v.s. II

64

128

256

512

1,024

2,048

4,096

8,192

16,384

0

60

120

180

240

300

360

420

480

1 4 16 64 256 1024

In
-M

em
 W

rit
e

B
uf

fe
r

-
M

B

T
im

e
(s

ec
s)

Queue Size / RPC Queue / Client

Server-Side Buf Size

Client-Side Buf Size

Run Time

Flush Time

Compaction Time

(b) Type II w/ RPC Buffers

Figure 4: Performance of DeltaFS apps inserting empty files
into a single directory, using either Type-I or II executions,
with scaling RPC queue sizes and in-memory buffer.

in the first experiment (running on 64 client machines). For
both IndexFS setups, throughput was essentially a function
of dedicated server resources, since each namespace was con-
stantly served by a fixed set of server daemons on a given
set of nodes, leading to a waste of resources if clients were
too few, or a bottleneck if clients were too many.

Not having any dedicated servers, each“DeltaFS” job read
the metadata by setting up a cluster of auxiliary metadata
servers to dynamically load the provided snapshot (as a col-
lection of pre-compacted SSTables). Compared with the two
IndexFS jobs, the “DeltaFS” jobs showed higher throughput
since they were effectively leveraging a larger set of hardware
resources to serve metadata. Another important benefit of
this DeltaFS approach is the freedom of each job to deploy
its own metadata server tier. This symmetric and highly
flexible metadata architecture allows metadata performance
to scale agilely with individual job allocations9, rather than
as a global number set by cluster administrators.

4.2 Type-I v.s. Type-II Executions
To compare the performance between partitioned (Type-

II) and non-partitioned (Type-I) executions, we ran exper-
iments with a single IndexFS metadata server on the head
node and 864 bulk insertion client processes on 108 compute
nodes to emulate a Type-I job using a set of private meta-
data servers, and experiments with 864 IndexFS metadata
server processes co-located with 864 regular client processes
on the same 108 compute nodes to emulate a Type-II job
associated with an auxilary metadata service.

Figure 4a shows the experimental results of the two kinds
of jobs each creating 512M empty files into a directory. The
green bar shows the time it took for each job to finish all file
creates, the blue bar shows the time it took for all servers (ei-
ther private metadata servers or auxiliary metadata servers)
to flush their remaining in-memory write buffers to the un-
derlying storage, and finally the yellow bar shows the time
it took for a compaction job to merge-sort SSTables. Com-
pared with Type-I, the Type-II job exhibited a much longer
file creation time since each file create operation had to in-
cur at least one RPC to a remote auxiliary metadata server.
However, the use of these auxiliary metadata servers permit-
ted a well-partitioned metadata key distribution such that
the later compaction of the entire key space could be safely

9 In our implementation, there is also no need for the size
of a job to divide or be a multiplier of the size of a previous
job in order to obtain proportional metadata scalability.

4

implemented as a set of independent local sub-tasks concur-
rently executed at each auxiliary metadata process and tak-
ing much less time to complete. Nevertheless, RPC overhead
dominated, which made Type-I the winner in Figure 4a.

To better characterize RPC overhead, we added write-
behind buffering at each IndexFS client to accumulate and
coalesce RPC requests before sending them to the destina-
tion server as a single batch. Figure 4b shows the effect of
different RPC queue sizes, ranging from 1 to 1024 requests
per destination auxiliary server process at each client pro-
cess, collectively capable of holding 764K to 764M pending
RPC requests. In Figure 4b, the blue bar now includes the
time it took for all clients to flush their RPC queues on test
completion. With RPC write-behind buffers, Type-II jobs
took much less time to complete, although deep queues can
actually do a disservice by failing to keep auxiliary servers
busy until the final flush. In general, a storage system per-
forming aggressive buffering should run faster than one with
less buffering, though at the same time being more suscep-
tible to data loss during failures. As such, Type-II is gen-
erally better if neither larger memory consumption nor an
extended window of data loss is a concern. Type-I, how-
ever, can be especially useful when the compaction can be
delayed through a series of mostly-write jobs until a read-
intensive phase sets in, lending itself to more efficient check-
pointing[17], where data is not always needed immediately.

5. RELATED WORK
Our initial designs were inspired by PLFS[17, 35], which

is a library file system capable of shaping I/O access pat-
terns and aggregating small files. PLFS showed us the effi-
ciency of being a library file system, the importance of de-
coupling sharing where possible, as well as the influence of
metadata compaction on read/write performance[36]. Like
PLFS, DeltaFS’s metadata plane can also be used to pack
small files[37]. In addition, both PLFS and DeltaFS allow
user applications to “compact” metadata (either online or
offline) to obtain a new metadata organization that is opti-
mized for future read operations. Unlike PLFS, DeltaFS’s
table-based metadata representation is general purpose and
integrated with the file system. Also unlike PLFS, DeltaFS
does not assume an underlying parallel file system[38], and
can operate on top of one or multiple simple object stores.

Serverless file systems[6, 39] are traditionally character-
ized by a set of symmetric file servers that are each capable
of serving the entire file system namespace. This architec-
ture is reused by both BatchFS [16] and DeltaFS to enable
flexible metadata migration and service allocation, and is
also extended by DeltaFS to be literally “serverless”.

Client-funded metadata is a technique initially proposed
by BatchFS [16] to advocate the use of abundant client re-
sources to serve file system metadata in an efficient way.
This idea is inherited by DeltaFS with each DeltaFS appli-
cation operating upon a materialized namespace view pro-
jected by a provisional metadata service. However, different
from BatchFS, each published namespace in DeltaFS is re-
garded as a 1st-class entity, rather than a temporary write
buffer that is eventually merged into a global namespace.

The idea of leveraging client resources can also be applied
to data operations, such as storing application data directly
on compute nodes using their local storage[40], or buffering
checkpointing data inside the local memory of each compute
node[18] or at a set of specialized I/O server nodes equipped

with fast flash storage[3, 4]. Since most of these techniques
focus on speeding up the data path, they are orthogonal and
complementary to our work.

Object storage has been increasingly used as an underly-
ing storage infrastructure upon which multiple richer storage
abstractions are being built[7, 22, 41–43]. We envision fu-
ture HPC data centers to be object-storage oriented, with
the file system being one of the services layered atop.

Conflict resolution protocols have been widely used in dif-
ferent storage systems to ensure a consistent view of all
stored objects[16, 26, 31, 44]. Like many existing imple-
mentations, DeltaFS allows conflicts to be resolved using
application domain logic[26, 31], and delays resolving con-
flicts until the data is actually requested[16, 26]. Unlike
many existing solutions, DeltaFS does not enforce a single
namespace as the ultimate destination into which all updates
will eventually get merged. Instead, each conflict resolution
creates a new namespace, with the original left intact.

6. CONCLUSION
At exascale, metadata is no longer a trivial step that adds

only a tiny latency before data operations. In LANL’s new
Trinity cluster[2], it takes 256s for every CPU core to create
a file in the global Lustre namespace, but only 600s for the
entire 2PB of memory to be dumped from compute nodes to
burst-buffer nodes. Traditional file systems are unlikely to
scale to exascale because: 1) centralized metadata requires
either expensive hardware to scale-up or a large number of
dedicated machines to scale-out; 2) imposing a single names-
pace forces applications to frequently synchronize with each
other mostly unnecessarily; 3) ensuring metadata integrity
and strong consistency over a global namespace demands
the use of a dedicated (and easily bottlenecked) coordinator
to enforce system invariants; and 4) classic on-disk meta-
data representation lacks efficient support for fast metadata
insertion, migration, redistribution, and aggregation.

Through a serverless design, DeltaFS will not need the
dedicated server machines found in traditional parallel file
systems. Each application can start from immutable snap-
shots and manage their own metadata using their own re-
sources. DeltaFS’s LSM-based metadata representation will
be optimized for write, efficient to share and merge, and can
enable appropriate compaction to optimize later retrieval.
In addition, DeltaFS advocates the use of object stores to
provide the underlying storage, and to assist with security
enforcement, garbage collection, as well as administrative
data purging. Preliminary experiments demonstrated that
DeltaFS can be orders of magnitude faster for metadata than
file systems relying on dedicated metadata services.

7. ACKNOWLEDGMENTS
This research was supported in part by the DOE and Los

Alamos National Laboratory, under contract number DE-
AC52-06NA25396 subcontracts 161465 and 153593 (IRH-
PIT), the National Science Foundation under awards CNS-
1042537 and CNS-1042543 (PRObE, www.nmc-probe.org),
and Intel as part of the Intel Science and Technology Cen-
ter for Cloud Computing (ISTC-CC). We also thank the
member companies of the PDL Consortium (Actifio, Avago,
EMC, Facebook, Google, Hewlett-Packard, Hitachi, Intel,
Microsoft, MongoDB, NetApp, Oracle, Samsung, Seagate,
Symantec and Western Digital).

5

www.nmc-probe.org

References
[1] S. Lang et al. “I/O Performance Challenges at Lead-

ership Scale”. In: SC. 2009.

[2] Trinity. http://www.lanl.gov/projects/trinity/.

[3] N. Ali et al. “Scalable I/O forwarding framework for
high-performance computing systems”. In: CLUSTER.
2009.

[4] N. Liu et al. “On the role of burst buffers in leadership-
class storage systems”. In: MSST. 2012.

[5] P. Schwan. “Lustre: Building a file system for 1000-
node clusters”. In: Linux Symposium. 2003.

[6] F. Schmuck and R. Haskin. “GPFS: A Shared-Disk
File System for Large Computing Clusters”. In: FAST.
2002.

[7] B. Welch et al. “Scalable Performance of the Panasas
Parallel File System”. In: FAST. 2008.

[8] P. H. Carns et al. “PVFS: A parallel file system for
Linux clusters”. In: Linux Showcase and Conference.
2000.

[9] Titan. https://www.olcf.ornl.gov/computing-

resources/titan-cray-xk7/.

[10] S. R. Alam et al. “Parallel I/O and the metadata wall”.
In: PDSW. 2011.

[11] R. Latham, R. Ross, and R. Thakur. “The impact of
file systems on MPI-IO scalability”. In: EuroPVM/MPI.
2004.

[12] S. A. Weil et al. “Dynamic Metadata Management for
Petabyte-Scale File Systems”. In: SC. 2004.

[13] J. Xing et al. “Adaptive and Scalable Metadata Man-
agement to Support a Trillion Files”. In: SC. 2009.

[14] S. Patil and G. Gibson. “Scale and Concurrency of
GIGA+: File System Directories with Millions of Files”.
In: FAST. 2011.

[15] K. Ren et al. “IndexFS: Scaling File System Metadata
Performance with Stateless Caching and Bulk Inser-
tion”. In: SC. 2014.

[16] Q. Zheng, K. Ren, and G. Gibson. “BatchFS: Scal-
ing the File System Control Plane with Client-Funded
Metadata Servers”. In: PDSW. 2014.

[17] J. Bent et al. “PLFS: a checkpoint filesystem for par-
allel applications”. In: SC. 2009.

[18] R. Rajachandrasekar et al. “A 1 PB/s File System
to Checkpoint Three Million MPI Tasks”. In: HPDC.
2013.

[19] R. Prabhakar et al. “Provisioning a Multi-tiered Data
Staging Area for Extreme-Scale Machines”. In: ICDCS.
2011.

[20] P. O’Neil et al. “The Log-structured Merge-tree”. In:
Acta Inf. 33.4 (June 1996).

[21] D. Hildebrand and P. Honeyman. “Exporting storage
systems in a scalable manner with pNFS”. In: MSST.
2005.

[22] S. A. Weil et al. “Ceph: A Scalable, High-Performance
Distributed System”. In: OSDI. 2006.

[23] S. A. Weil et al. “RADOS: A Scalable, Reliable Stor-
age Service for Petabyte-scale Storage Clusters”. In:
PDSW. 2007.

[24] P. Hunt et al. “ZooKeeper: Wait-free Coordination for
Internet-scale Systems.” In: USENIX ATC. 2010.

[25] LevelDB. A fast and lightweight key/value database li-
brary. https://github.com/google/leveldb/.

[26] G. DeCandia et al. “Dynamo: Amazon’s Highly Avail-
able Key-value Store”. In: SOSP. 2007.

[27] F. Chang et al.“BigTable: a distributed storage system
for structured data”. In: OSDI. 2006.

[28] M. Burrows. “The Chubby Lock Service for Loosely-
coupled Distributed Systems”. In: OSDI. 2006.

[29] OpenLDAP. http://www.openldap.org/.

[30] AWS Directory Service. https://aws.amazon.com/
directoryservice/.

[31] D. B. Terry et al.“Managing Update Conflicts in Bayou,
a Weakly Connected Replicated Storage System”. In:
SOSP. 1995.

[32] H. Greenberg, J. Bent, and G. Grider. “MDHIM: A
Parallel Key/Value Framework for HPC”. In: HotStor-
age. 2015.

[33] Nome. http://nome.nmc-probe.org/.

[34] G. Gibson et al. “PRObE: A Thousand-Node Exper-
imental Cluster for Computer Systems Research”. In:
USENIX ;login: 38.3 (June 2013).

[35] A. Torres and D. Bonnie. Small File Aggregation with
PLFS. http://permalink.lanl.gov/object/tr?

what=info:lanl-repo/lareport/LA-UR-13-22024.
2013.

[36] J. He et al. “Discovering Structure in Unstructured
I/O”. In: PDSW. 2012.

[37] K. Ren and G. Gibson. “TableFS: Enhancing Meta-
data Efficiency in the Local File System”. In: USENIX
ATC. 2013.

[38] C. Cranor, M. Polte, and G. Gibson.“Structuring PLFS
for Extensibility”. In: PDSW. 2013.

[39] T. E. Anderson et al. “Serverless Network File Sys-
tems”. In: SOSP. 1995.

[40] D. Zhao et al. “FusionFS: Toward supporting data-
intensive scientific applications on extreme-scale high-
performance computing systems”. In: Big Data. 2014.

[41] G. A. Gibson et al. “A Cost-effective, High-bandwidth
Storage Architecture”. In: ASPLOS. 1998.

[42] B. Calder et al. “Windows Azure Storage: A Highly
Available Cloud Storage Service with Strong Consis-
tency”. In: SOSP. 2011.

[43] J. Chen et al. “Walnut: A Unified Cloud Object Store”.
In: SIGMOD. 2012.

[44] J. J. Kistler and M. Satyanarayanan. “Disconnected
Operation in the Coda File System”. In: SOSP. 1991.

6

http://www.lanl.gov/projects/trinity/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
https://github.com/google/leveldb/
http://www.openldap.org/
https://aws.amazon.com/directoryservice/
https://aws.amazon.com/directoryservice/
http://nome.nmc-probe.org/
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-22024
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-22024

	Introduction
	DeltaFS Vision

	System Design
	Metadata Representation
	Namespace Propagation
	No Ground Truth

	Application Execution
	Overlapping Sub-namespaces (Type-I)
	Partitioned Sub-namespaces (Type-II)

	Measurements
	Traditional v.s. Serverless Architecture
	Type-I v.s. Type-II Executions

	Related Work
	Conclusion
	Acknowledgments

