
Feign: In-Silico Laboratory for Researching I/O Strategies
Using the Flexible Event Imitation Engine (Feign) to alter application I/O

Jakob Lüttgau
Universität Hamburg

Bundesstr. 45a
20146 Hamburg

Email: jakob@whatz.eu

Julian M. Kunkel
DKRZ

Bundesstr. 45a
20146 Hamburg

Email: kunkel@dkrz.de

Abstract—Evaluating I/O performance of an application
across different systems is a daunting task because it requires
preparation of the software dependencies and required input
data. Feign aims to be an extensible trace replay solution for
parallel applications that supports arbitrary software and library
layers. The tool abstracts and streamlines the replay process while
allowing plug-ins to provide, manipulate and interpret trace data.
Therewith, the application’s behavior can be evaluated without
potentially proprietary or confidential software and input data.

Even more interesting is the potential of Feign as a virtual
laboratory for I/O research: by manipulating trace data, exper-
iments can be conducted; for example, it becomes possible to
evaluate the benefit of optimization strategies. Since a plug-in
could determine “future” activities, this enables us to develop
optimal strategies as baselines for any run-time heuristics, but
also eases testing of a developed strategy on many applications
without modifying them.

The paper proposes and evaluates a workflow to automatically
apply optimization candidates to application traces and approx-
imate potential performance gains. By using Feign’s reporting
facilities, an automatic optimization engine can then indepen-
dently conduct experiments by feeding traces and strategies to
compare the results.

I. INTRODUCTION

Today most high-performance computers (HPC) are cluster
installations [14]. Clusters introduce complexity on many lev-
els because of the variety of hardware and software technolo-
gies they utilize. Since applications pose different demands
on the system, performance prediction is anything but trivial.
A classification scheme for scientific applications is offered
by the thirteen dwarfs[4]; they also serve as templates for
application-specific benchmarks. Storage and network tech-
nologies are bottlenecks in modern HPC systems; in general,
data can be produced much faster than permanently stored.

New technology is arising all the time, as do problems
with bleeding edge hardware and software. Evaluating these,
or comparing new technology with already deployed systems is
often non-trivial. Also, to validate research in I/O middleware,
it is important to check its impact on many applications. The
system’s complexity requires in-dept knowledge, the same
is also true for preparing the required environment for an
application. Complicated dependencies can make deploying
an application on another system unfeasible, especially when
human resources are already scarce. Finally, data and/or pro-
grams might be confidential so that giving away copies is not

an option. This makes seeking support within the open source
community or even from vendors more complicated.

Comparing systems is traditionally done using benchmarks.
But synthetic benchmarks such as the LINPACK for HPC
systems are not well suited to predict the behavior of applica-
tions. Developing application-specific benchmarks is very time
consuming. One approach to automate and simplify applica-
tion specific benchmarking, stress-testing and debugging is to
make use of application traces. This overcomes many of the
problems mentioned above.

Traces, being available in binary or text formats, are very
portable in comparison to applications. Also, once compiled, a
generic trace player could mimic many applications with little
effort. Traces reliably capture the application characteristics.
In fact, some of the benchmarking tools in Section II already
use application traces to stress the system. It is also easy to
remove confidential information, as in the particular case of
I/O, only the access pattern is relevant but not the actual data.

Traces are deterministic and invariant by themselves which
is a benefit in many situations, but at the same time also
introduces constraints. For example, traces are to some extent
bound to the environment where they have been obtained –
e.g., already existing input files. Thus, replaying the trace on
another system may not be so meaningful after all.

Another issue is the evaluation of code-invasive optimiza-
tion strategies; To test a certain strategy such as application
guided pre-fetching, the code must be changed without know-
ing the benefit in advance. It is prohibitively time consuming
to test the all s strategies with all a applications, as it would
require (a · s) implementations.

The paper illustrates how these limitations can be relaxed
and, more importantly, how to use trace data to conduct I/O
related experiments without needing to change the application
code, developing plug-ins for Feign that look for patterns in the
trace sequence and apply optimizations automatically where
appropriate. Therewith, strategies can be developed orthogo-
nally to application code and after approximating the benefit,
fitting optimizations can be integrated into the applications (or,
preferably, the middleware).

This paper is structured as follows: related work will
be presented in Section II, covering tools to obtain traces
as well as existing benchmarking and replaying solutions.
Section III will introduce Feign, the flexible event imitation
engine. Section IV presents applications for replay software

43



beyond stoically reproducing system activity; in particular, we
suggest applying optimization strategies to trace data, similar
to conducting experiments in a virtual laboratory. Examples of
this approach are given and evaluated in Section V, before we
conclude with an outlook on future work in Section VI.

II. RELATED WORK

Related work can be classified into approaches for tracing,
benchmarking and specific replaying tools.

Monitoring and analysis of system state and performance
data are important for optimizing HPC systems; tools which
record application and I/O behavior include Vampir [9],
ITAC [7], Darshan [5] and SIOX [10]. Looking beyond HPC
I/O, trace tools such as Wireshark [6] for network analysis
can be considered. Many domain-specific workload catchers
are available, e.g., NFS workloads [3], but typically they do
not collect all the information needed for replay. It is also
important to realize that replay authenticity directly depends on
the granularity and timing precision of the trace environment.

Communities may extract specific benchmarks directly
from an application. For example, the (outdated) FLASH I/O
kernel [17] performs a typical HDF5 I/O pattern as created
by the FLASH astrophysics community code. The RAPS1

initiative started at the end of the 20th century [13] tries to
extract benchmarks by reducing the code base of an application
to its significant part. However, for many applications, I/O
kernels are not available.

There are also tools and environments which reduce
the burden of creating a benchmark or application kernel.
Parabench [12] is a programmable parallel benchmark. Bench-
marks can be programmed and stored in a special script lan-
guage. It also permits us to set up MPI groups and to generate
reports from the measurements. Several tools allow replay of
a single process’s access pattern, for example, IOZone2 or
ioreplay [1]; IOZone replays telemetry data (offset, size, delay)
from a file. However, only few are available in the domain of
parallel computing.

DIOS [8] is a parallel file system benchmark developed
during a PhD thesis at the TU Dresden. Instructions are read
from XML input, which also allow to demand parameter
randomization. POSIX replay is realized by converting Vam-
pirTrace [2] files into XML. It supports MPI parallel tasks as
well as MPI-I/O and POSIX I/O. The tool has not officially
been released yet. The skel tool [11] allows for creating
”skeleton applications” in an automatic way through multiple
processing steps based on ADIOS XML configuration files.

Unfortunately, the tools that are publicly available are hard
to extend. But monolithic solutions are impractical when it
comes to meet the diverse demands of parallel systems.

A. SIOX

Since traces created by the SIOX project are used with
Feign for evaluation (cf. Section V), the following subsection
will describe SIOX in more detail. SIOX [10] is a recent
project combining online monitoring with offline learning.

1Real Applications on Parallel Systems
2http://www.iozone.org/

Fig. 1. Separating the concern of reading trace files from interpreting,
replaying and modifying by providing an abstract datatype.

It collects event-based information about the I/O activities
taking place at the instrumented components of a system,
and samples statistics about the resource usage of the nodes
where the SIOX daemons are running. Monitoring data flows
from the instrumented component into the daemon process,
and from there into one of SIOX’s transaction servers [15].
The recorded information can be analyzed offline to update a
knowledge base holding optimized parameter suggestions for
common or critical situations. During online operations, these
parameters may be queried and used as predefined responses
whenever such a situation occurs. Several optimization plug-
ins are currently under development and assessment. The
choice of responses to each situation is diverse, ranging from
adjusting the monitoring level in the presence of anomalies,
to automatically enforcing optimization techniques to achieve
better performance [16].

SIOX was designed with modularity in mind: Upon startup
of either a process, component, or daemon, a configuration
file is read containing the desired modules and plug-ins that
are to be used. Modules may offer additional functionality for
analysis or optimizations. A holistic approach to tracing is
offered by SIOX which makes it attractive as a source for
application traces from a replaying perspective. Users of SIOX
can customize the instrumentation and thus derive arbitrary
granularity. The only limit here is system performance and
latency and distortions introduced during tracing. It turns out
that a replay engine can integrate nicely into an optimization
framework (cf. Section IV).

III. FLEXIBLE EVENT IMITATION

While replaying traces seems to be a straightforward task
which can be fully automated, in practice, a lot of preprocess-
ing and manual work is still left to the user. A first set of
problems stems from the variety of different trace formats that
are available as well as the need to meet certain pre-requisites
in the environment. Furthermore, managing requirements such
as pre-creation of files and directories that are read may be
necessary depending on the layer. Luckily, many of these
problems can be automated, but so far, little effort is invested
to consolidate different strategies concerning replay.

Feign establishes a processing pipeline to allow for mean-
ingful playback. The replay process is split into multiple
phases which plug-ins can hook into. By separating the in-
terpretation of an activity stream from parsing the trace files,
an interpreter for one layer can replay activities regardless of
the source, provided all necessary information is available in
the trace format. By offering operations to modify the trace, it
becomes possible to account for system details and to add or
retract system-specific optimizations as well as variations and

44



Fig. 2. The activity pipeline populated with several plug-ins.

Fig. 3. The Feign-API and how plug-ins can interact with the core
components, e.g., to increase the size of the lookahead window.

randomness. An abstract view of Feign’s modular approach is
shown in Figure 1.

Many traces are not directly replayable because they make
requirements on the environment, e.g., replaying a file which
is read requires the file to exist and be of a certain size. These
requirements are likely not to be met when moving between
systems. Similar problems arise when replaying MPI, while
trivial cases of MPI_Send() and MPI_Recv() work out of
the box with Feign. Calls that use previously registered MPI
datatypes or communication groups are only replayable in a
meaningful way when the trace environment records calls to
the functions responsible for their creation and registration.

To replay such traces, some additional effort is required.
As this is pretty common, Feign’s replay pipeline provides
means to establish replayability by incorporating a pre-creation
phase. This phase can also be used to clean the trace of
uninteresting activities. Moreover, since modifier plug-ins may
need some CPU time to alter or inject activities, it is possible
to perform a first run in which these time-consuming tasks
are performed and then store a modified trace file which is
used during the replay in a second phase. This way, many
trace files regain replayability and the actual replay is more
accurate as unnecessary distortions from polluted trace files
can be minimized. Figure 2 gives a graphical overview of the
overall replay pipeline.

Figure 3 provides an overview of Feign’s APIs. A provider
allows for reading a trace or creating activities on the fly to
mimic arbitrary application configurations. Several activities
are held in the buffer which offers a convenient look-ahead for
the plug-ins. E.g., a plug-in can inject activities if a specific
condition is met. The replay manager controls fetching new
activities and invokes a fitting replayer for each particular layer
(POSIX, MPI, ...). Feign allows plug-ins to hook into different
phases of the replay which eases creation of new tools.

#include <feign.h>

// provide some meta information
Plugin plugin = {

.name = "Example-Replayer",

.version = "1.2.3",

.intents = FEIGN_REPLAYER,
};

int init(int argc, char *argv[])
feign_register_plugin(&plugin);
return 0;

}

// expected because of FEIGN_REPLAYER
Activity * replay(Activity * activity) {

// do something and consume activity
return NULL;

}

Fig. 4. A minimalistic example for a replay plug-in. In init() the plug-
in announces that it intends to (just) replay activities. Feign then locates
the symbol for replay() and this callback is registered in the processing
pipeline (see Figure 2).

Several helper tools are available (or planned) to simplify
the development of new plug-ins. Pre-creation helpers, for
example, simplify setting up the initial environment before
measuring the performance.

Creating a plug-in in C/C++ is straightforward – devel-
opers need to include the feign.h header file and define
a function called init() where the plug-in can announce
any further intents. For each intent, Feign expects a callback
function which is registered into the activity pipeline (see
Figure 2). A very simple example is shown in Figure 4. To
use the plug-in, the source needs to be compiled and linked
into a shared object. The Feign executable allows the user
to specify different plug-ins to load using the --plugin
<path-to-shared-object> argument.

To ease creation of basic provider and replay plug-ins, we
work on a tool which supports automatic plug-in generation
from annotated header files. These annotations are very sim-
ilar to those used in the SIOX project and we envision an
annotation format which supports both, creation of monitoring
plug-ins for SIOX and creation of different Feign plug-ins
for reading, executing and manipulating previously recorded
activities. Instead of creating plug-ins, the same tool could
also change the output flavor directly creating C code that
represents the access pattern. Currently, however, this is only
partly achieved and the subject of further development.

IV. VIRTUAL LABORATORY

Testing an optimization strategy on an application may
require intrusive code changes, and a strategy needs to be
implemented in each application that may benefit from it.
This is not only a very tedious task, but may cause situations
in which very good strategies are not implemented because
nobody could predict their benefit. Moreover, sometimes it is
interesting to derive optimal strategies that are baselines for
any online heuristics such as caching. Normally, an optimal
strategy would require an oracle which predicts the future

45



Fig. 5. Virtual laboratory: A third-party application uses Feign to explore
parameters and strategies.

application behavior accurately. Traces, however, contain all
the future activities and, thus, can fill this role.

Additionally, universal as well as context-dependent opti-
mizations can be isolated and used in automatic optimization
engines to evaluate their benefit for all applications. Feign
allows users to create plug-ins that apply optimization strate-
gies to trace data. These optimizations can be tailored or
parameterized to take system details into account. Currently,
we have implemented a pre-fetching strategy using posix_
fadvise(POSIX_FADV_WILLNEED) and a module which
aggregates concurrent I/O operations into bigger calls.

In many situations, however, there is a lack sufficient mod-
els to decide which optimizations to apply. In such situations,
it is common to turn to experiments. But the number of
parameters usually involved prohibits brute force search, and
in spite of the latest advances in machine learning, intelligent
search space exploration is still in its infancy.

Approaches like reinforcement learning become easy to use
when there is a playground to experiment and try different
strategies, thus creating a feedback loop allowing the system
to adjust and even actively learn to some extent for itself.

An optimization system can identify problems for example
by considering peak or average performance data. A detected
anomaly potentially offers optimization opportunities. For in-
stance, if SIOX detects such an anomaly, it might have an
optimization at hand and apply it, but often the decision
component within could not decide what to do. In this case,
the framework could trace application behavior, partly or in
total, for later testing with Feign. This workflow is illustrated
in Figure 5.

V. EVALUATION

To demonstrate the viability of the concept, we explored
two basic optimization strategies. These examples may seem
simplistic, but keep in mind that the I/O calls may be dis-
tributed across the application logic as well as across many
files, resulting in high implementation effort even though the
strategy is simple. For the following examples, all traces are
obtained using SIOX. To gain replayability, the particular
settings made use of a ”change I/O root”-plug-in, that rewrites
all file paths to point to a user defined directory.

0

100

200

300

400

Application Replay

R
un

tim
e 

in
 s

what

Baseline

Optimized

Fig. 6. Application and replay runs compared with and without optimizations.
In the case of replay the posix_fadvise(POSIX_FADV_WILLNEED)
is automatically injected using a Feign plug-in looking for a
lseek();read(); pattern.

A. Pre-fetching of Data

There are many strategies for pre-fetching. Application-
aware pre-fetching promises to achieve best performance,
but requires the programmer to modify the application:
posix_fadvise(POSIX_FADV_WILLNEED) allows the
programmer to announce regions of the file that will be needed
in the near future and thus are candidates for pre-fetching.
Linux may pre-fetch the data and thus reduce wait times
for the program, resulting in a notable speedup. Thanks to
Feign, potentially interesting strategies can be evaluated prior
to coding.

A naive strategy is to look two activities ahead: if it is an
lseek() followed by a read(), an fadvise call is injected
with the particular offset and the size specified by the read
call. Computation time is not taken into account explicitly; if
there is sufficient compute time between the current activity
and the read(), pre-fetching can completely hide the access
of slow I/O.

This simple approach just pre-fetches the next operation
and assumes free memory suffices. A more sophisticated
strategy would not only look at the next two activities, but scan
more. Based on the time between them, the advise needs to be
injected a few activities before the actual read(). Moreover,
by injecting multiple advises, the OS and disk scheduler can
optimize the access order better.

To assess this strategy, a small benchmark is created which
loops over 10 GiB of data stored on a local disk. On each
iteration, the benchmark simulates compute time by sleeping
for a while, then it seeks 1000 KiB forward and reads a 1 KiB
chunk – the whole area covered by the seek and one access
is defined as the stride size. The sleep time is 10 ms to make
read-ahead possible. The benchmark is executed several times;
between runs, the page cache is cleared using echo 3 >
/proc/sys/vm/drop_caches.

In order to validate the results, the calls to posix_
fadvise(POSIX_FADV_WILLNEED) have been also em-
bedded into the benchmark’s source code, yielding the best
performance. Figure 6 shows the runtime of the application
with and without optimization, and the replay. As can be
seen, appropriate pre-fetching can speed up this particular
application by almost a factor of two (this is rather obvious as
I/O time can be completely hidden). With our first prototype,
there is a noticeable overhead in the replay baseline runs; the

46



reason for the effect is not investigated in detail, yet. However,
validation runs, in which just the actual I/O and sleep calls have
been removed, showed only a small overhead of around 2.5%.

Scalability is an important requirement for any workload
replay engine in HPC. Using pre-processing, each rank can
be provided with a trace stripped of all unrelated activity and
modifications applied. If the nodes come with local storage,
I/O can be further reduced by moving the optimized trace files
from the shared storage to node local storage.

B. Aggregating I/O

Coalescing is a common optimization strategy where ad-
jacent data accesses can be merged into one larger access to
reduce the number of system calls. While the basic strategy is
already employed in kernel space, applications that issue many
small operations still suffer from the costs involved in a system
call which can be easily avoided by accessing larger chunks
of data. Moreover, coalescing of read operations is often not
possible in kernel space, because it is impossible to predict the
next position of future reads.

The developed coalescing plug-in merges adjacent reads
or writes until a certain buffer size is reached and then issues
one call for all of them instead. In this experiment, the access
pattern of the FLASH HDF I/O kernel is traced for 8 processes.
We pick the trace of one process and replay it using different
buffer sizes. The observed run-time in shown in Figure 7.
With buffers in the range of several 100 KiB, a performance
improvement of 14 percent can be achieved. This is mainly due
to the fact that out of 782 issued writes, 640 merely append
4 or 8 byte. The trace for this experiment does include the
actual (input) data, by knowing the bytes read and written, the
trace engine can generate dummy data in a pre-creation step:
A file can be initialized with a size according to the last byte
accessed by any read() in the trace.

If read-only access to high-level APIs such as HDF5 should
be recorded and replayed, the pre-creation of the exact file
layout is impossible without additional knowledge: a trace may
just document the access of one out of many scientific variables
stored in the logical file, or the file layout may depend on
settings given during the initial creation of the file. Therefore,
handling this kind of workload requires the trace environment
to record the actual settings for the pre-creation. Alternatively,
a Feign plug-in may use a default layout or allow the user to
define the layout.

C. Replay of Parallel Applications: MPIOM

To demonstrate the benefit of Feign, the Max-Planck-
Institute Global Ocean Model (MPIOM) was run on 10 nodes
using SIOX to obtain the trace. In this case, all activity was
recorded into a single trace file and the trace is then replayed
on another test system using Feign. To replay only the activity
of certain processes, a simple filter plug-in that white-listed
only a specific rank was used, thus dropping any unwanted
activity. For MPIOM, this is desirable because only a few
nodes (in our case only one) act as application-specific I/O
servers, which allows us to investigate and experiment with the
I/O pattern on smaller systems. The processing pipeline also
includes the plug-in for providing activities from the SIOX
trace and another plug-in to replay POSIX activities.

●●●●●●●●●●●●●●●●●●●
●●●●●

0.0

0.5

1.0

10 1k 100k 10M
buffer size

ru
nt

im
e 

in
 s

Fig. 7. Evaluating coalescing with different buffer sizes for a FLASH I/O
replay. The red line is the run-time without aggregation.

The optimization plug-ins introduced in this paper did not
result in a runtime reduction for the trace, as the workload
is dominated by larger writes. However, the replay was able
to recreate the workload of the application on the filesystem
(created files, read/write access patterns) for the annotated
functions. Prior to actual replay, a precreator plug-in checks
the target directory, creating required input files of sufficient
size.

VI. SUMMARY & OUTLOOK

Our results encourage to continue following the proposed
approach. Extracting I/O benchmarks from applications can
be automatized by tracing the behavior and by executing the
trace in a replay engine. This removes external dependencies of
the original application and eases communication with vendors
by extracting relevant code pieces for later investigation. The
Feign tool allows not only to replay traces but also to alter
them on-line or off-line. Moreover, Feign provides everything
necessary for conducting I/O research in a virtual laboratory.
Various optimization strategies can be integrated; it is possible
to inject additional system hints or rewrite sequences of
operations. Implementing plug-ins is reasonable easy, and, they
can be applied to other traces, by simply switching them on
or off. Two basic strategies – coalescing I/O accesses and pre-
fetching – have been integrated and evaluated on simple test-
cases. Since optimization strategy and application trace can be
regarded as orthogonal in our approach, the effect of intrusive
code modifications can be evaluated before actually changing
the application.

Currently, we are unifying the annotation system between
SIOX and Feign to automatically create tracing and replay
plug-ins. Layer support for a subset of POSIX calls is already
achieved using automatic generation from annotated header
files. Better POSIX and MPI support as well as generation
for filtering and mutation plug-ins are next on the roadmap.
We also experiment with alternative optimization schemes for
several traces of climate applications, we will harden the
software core and optimize it. For the future, we envision a
platform for exchanging traces and optimization strategies in
order to raise portable HPC optimization to a new level.

47



ACKNOWLEDGMENTS

We thank Venka Michaela Zimmer for her review.

REFERENCES

[1] ioreplay. http://code.google.com/p/ioapps/wiki/ioreplay, 2014. [Online;
accessed 2014-03-01].

[2] Vampir Trace. http://www.vampir.eu/, 2014. [Online; accessed 2014-
03-14].

[3] E. Anderson. Capture, Conversion, and Analysis of an Intense NFS
Workload. pages 139–152, 2009.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
K. A. Yelick, and C. Sciences. The Landscape of Parallel Computing
Research: A View from Berkeley. 2006.

[5] P. H. Carns, R. Latham, R. B. Ross, K. Iskra, S. Lang, and K. Riley.
24/7 characterization of petascale I/O workloads. In Proceedings of
the First Workshop on Interfaces and Abstractions for Scientific Data
Storage, New Orleans, LA, USA, Sept. 2009.

[6] G. C. et al. Wireshark, network protocol analyzer. https://www.
wireshark.org, 2014.

[7] Intel. ITAC, Intel Trace Analyzer and Collector. https://software.intel.
com/en-us/intel-trace-analyzer, 2014.

[8] M. Kluge. Comparison and End-to-End Performance Analysis of
Parallel File Systems. (September), 2011.

[9] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel. The Vampir Performance Analysis Tool-
Set. In Tools for High Performance Computing, Proceedings of the 2nd
International Workshop on Parallel Tools, pages 139–155. Springer,
2008.

[10] J. Kunkel, M. Zimmer, N. Hübbe, A. Aguilera, H. Mickler, X. Wang,
A. Chut, T. Bönisch, J. Lüttgau, R. Michel, and J. Weging. The
SIOX Architecture – Coupling Automatic Monitoring and Optimization
of Parallel I/O. In Supercomputing, number 8488 in Lecture Notes
in Computer Science, pages 245–260, Berlin, Heidelberg, 06 2014.
Springer.

[11] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Sam-
atova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu. Hello
ADIOS: The Challenges and Lessons of Developing Leadership Class
I/O Frameworks. 2013.

[12] J. May and L. Livermore. Pianola: A script-based I/O benchmark.
International Symposium on Automated Analysis-Driven Debugging,
pages 69–76, 2005.

[13] G. Mozdzynski. RAPS. Presentation: https://www.irisa.fr/orap/Forums/
Forum20/Presentations/GeorgeMozdzynski.pdf, 2006.

[14] Top500. Top500. http://www.top500.org/, 2014. [Online; accessed
2014-03-06].

[15] M. C. Wiedemann, J. M. Kunkel, M. Zimmer, T. Ludwig, M. Resch,
T. Bönisch, X. Wang, A. Chut, A. Aguilera, W. E. Nagel, M. Kluge,
and H. Mickler. Towards I/O Analysis of HPC Systems and a Generic
Architecture to Collect Access Patterns. Computer Science - Research
and Development, 1:1–11, 2012.

[16] M. Zimmer, J. Kunkel, and T. Ludwig. Towards Self-optimization
in HPC I/O. In Supercomputing, number 7905 in Lecture Notes
in Computer Science, pages 422–434, Berlin, Heidelberg, 06 2013.
Springer.

[17] M. Zingale. FLASH I/O Benchmark Routine Parallel HDF 5. http:
//www.ucolick.org/∼zingale/flash benchmark io/, 2001.

48




