
1

Fast Forward I/O & Storage

Eric Barton

Lead Architect

High Performance Data Division

High Performance Data Division Fast Forward I/O and Storage

Department of Energy - Fast Forward Challenge

FastForward RFP provided US Government funding for exascale research
and development

Sponsored by 7 leading US national labs

Aims to solve the currently intractable problems of Exascale to meet the
2020 goal of an exascale machine

RFP elements were CPU, Memory and Filesystem

Whamcloud won the Filesystem component

ÅHDF Group ð HDF5 modifications and extensions

ÅEMC ð Burst Buffer manager and I/O Dispatcher

ÅCray - Test

Contract renegotiated on Intel acquisition of Whamcloud

ÅIntel - Arbitrary Connected Graph Computation

ÅDDN - Versioning OSD

High Performance Data Division Fast Forward I/O and Storage

Exascale I/O technology drivers

2012 2020

Nodes 10-100K 100K-1M

Threads/node ~10 ~1000

Total concurrency 100K-1M 100M-1B

Object create 100K/s 100M/s

Memory 1-4PB 30-60PB

FS Size 10-100PB 600-3000PB

MTTI 1-5 Days 6 Hours

Memory Dump < 2000s < 300s

Peak I/O BW 1-2TB/s 100-200TB/s

Sustained I/O BW 10-200GB/s 20TB/s

High Performance Data Division Fast Forward I/O and Storage

Exascale I/O technology drivers

(Meta)data explosion

ÅMany billions of entities

ðMesh elements / graph nodes

ÅComplex relationships

ÅUQ ensemble runs

ðData provenance + quality

OODB

ÅRead/Write -> Instantiate/Persist

ÅFast / ad-hoc search: òWhereõs the 100 year wave?ó

ðMultiple indexes

ðAnalysis shipping

High Performance Data Division Fast Forward I/O and Storage

Exascale I/O requirements

Constant failures expected at exascale

Filesystem must guarantee data and metadata consistency

ÅMetadata at one level of abstraction is data to the level below

Filesystem must guarantee data integrity

ÅRequired end-to-end

Filesystem must always be available

ÅBalanced recovery strategies

ðTransactional models

ðFast cleanup up failure

ðScrubbing

ðRepair / resource recovery that may take days-weeks

High Performance Data Division Fast Forward I/O and Storage

Exascale I/O Architecture

Compute
Nodes

I/O
Nodes

Burst buffer
NVRAM

Disk

Metadata
NVRAM

Storage
Servers

Site
Storage
Network

Exascale Machine Shared Storage

Exascale
Network

High Performance Data Division Fast Forward I/O and Storage

Project Goals

Storage as a tool of the Scientist

Manage the explosive growth
and complexity of application
data and metadata at Exascale

ÅSupport complex / flexible analysis
to enable scientists to engage with
their datasets

Overcome todayõs filesystem scaling limits

ÅProvide the storage performance and capacity Exascale science will require

Provide unprecedented fault tolerance

ÅDesign ground-up to handle failure as the norm rather than the exception

ÅGuarantee data and application metadata consistency

ÅGuarantee data and application metadata integrity

High Performance Data Division Fast Forward I/O and Storage

I/O stack

Features & requirements

ÅNon-blocking APIs
ðAsynchronous programming models

ÅTransactional == consistent thru failure
ðEnd-to-end application data & metadata integrity

ÅLow latency / OS bypass
ðFragmented / Irregular data

Layered Stack

ÅApplication I/O
ðMultiple top-level APIs to support general purpose or application-specific I/O models

ÅI/O Dispatcher
ðMatch conflicting application and storage object models
ðManage NVRAM burst buffer / cache

ÅDAOS
ðScalable, transactional global shared object storage

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

High Performance Data Division Fast Forward I/O and Storage

Fast Forward I/O Architecture

Compute
Nodes

I/O Nodes
Burst Buffer

Storage
Servers

Application Lustre Server

MPI-IO

I/O Forwarding Client

Lustre Client

(DAOS+POSIX)

I/O Forwarding Server

I/O Dispatcher

NVRAM

HDF5
VOL POSIX

HPC Fabric
MPI / Portals

SAN Fabric
OFED

High Performance Data Division Fast Forward I/O and Storage

Transactions

Consistency and Integrity

ÅGuarantee required on any and all failures
ðFoundational component of system resilience

ÅRequired at all levels of the I/O stack
ðMetadata at one level is data

to the level below

No blocking protocols

ÅNon-blocking on each OSD

ÅNon-blocking across OSDs

I/O Epochs demark globally consistent snapshots

ÅGuarantee all updates in one epoch are atomic

ÅRecovery == roll back to last globally persistent epoch
ðRoll forward using client replay logs for transparent fault handling

ÅCull old epochs when next epoch persistent on all OSDs

Time

U
p
d
a
te

s

I/O Epochs

High Performance Data Division Fast Forward I/O and Storage

I/O stack

Applications and tools

ÅQuery, search and analysis
ðIndex maintenance

ÅData browsers, visualizers, editors

ÅAnalysis shipping
ðMove I/O intensive operations to data

Application I/O

ÅNon-blocking APIs

ÅFunction shipping CN/ION

ÅEnd-to-end application data/metadata integrity

ÅDomain-specific API styles
ðHDFS, Posix, é

ðOODB, HDF5, é
ðComplex data models

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

High Performance Data Division Fast Forward I/O and Storage

HDF5 Application I/O

DAOS-native Storage Format

ÅBuilt-for-HPC storage containers

ÅLeverage I/O Dispatcher/DAOS capabilities

ÅEnd-to-end metadata+data integrity

New Application Capabilities

ÅAsynchronous I/O
ðCreate/modify/delete objects

ðRead/write dataset elements

ÅTransactions
ðGroup many API operations into single transaction

Data Model Extensions

ÅPluggable Indexing + Query Language

ÅPointer datatypes

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

High Performance Data Division Fast Forward I/O and Storage

I/O Dispatcher

I/O rate/latency/bandwidth matching

Å Burst buffer / prefetch cache

Å Absorb peak application load

Å Sustain global storage performance

Layout optimization

ÅApplication object aggregation / sharding

ÅUpper layers provide expected usage

Higher-level resilience models

ÅExploit redundancy across storage objects

Scheduler integration

ÅPre-staging / Post flushing

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

High Performance Data Division Fast Forward I/O and Storage

DAOS Containers

Distributed Application Object Storage

ÅSharded transactional object storage

ÅVirtualizes underlying object storage

ÅPrivate object namespace / schema

Share-nothing create/destroy, read/write

Å10s of billions of objects

ÅDistributed over thousands of servers

ÅAccessed by millions of application
threads

ACID transactions

ÅDefined state on any/all combinations
of failures

ÅNo scanning on recovery

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

High Performance Data Division Fast Forward I/O and Storage

DAOS Container
Container FID Shard

Shard

Shard
Container Inode

UID, perms etc

Shard FIDs

Obj IDX

Object

Parent FID Shard Metadata (space etc)

Parent FID Obj metadata (size, etc)

Data

High Performance Data Division Fast Forward I/O and Storage

Versioning OSD

DAOS container shards

ÅSpace accounting

ÅQuota

ÅShard objects

Transactions

ÅContainer shard versioned by epoch

ðImplicit commit

ðEpoch becomes durable when globally persistent

ðExplicit abort

ðRollback to specific container version

ÅOut-of-epoch-order updates

ÅVersion metadata aggregation

I/O Dispatcher

Application I/O

DAOS

Application

U
s
e
rs

p
a

c
e

K

e
rn

e
l

Storage

Tools Query

High Performance Data Division Fast Forward I/O and Storage

Versioning with CoW

New epoch directed

to a clone

Cloned extents

freed when no

longer referenced

Requires epochs

to be written in order

High Performance Data Division Fast Forward I/O and Storage

Versioning with an intent log

Out-of-order epoch

writes logged

Log òflattenedó into CoW

clone on epoch close

Keeps storage system

eager

