
Data Layout Optimization for Petascale File Systems
Xian-He Sun

Department of Computer Science
Illinois Institute of Technology

sun@iit.edu

Yong Chen
Department of Computer Science

Illinois Institute of Technology

yong.chen@iit.edu

Yanlong Yin
Department of Computer Science

Illinois Institute of Technology

yyin2@iit.edu

ABSTRACT
In this study, the authors propose a simple performance model to
promote a better integration between the parallel I/O middleware
layer and parallel file systems. They show that application-
specific data layout optimization can improve overall data access
delay considerably for many applications. Implementation results
under MPI-IO middleware and PVFS2 file system confirm the
correctness and effectiveness of their approach, and demonstrate
the potential of data layout optimization in petascale data storage.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]:
Interconnections (Subsystems) – parallel I/O. D.4.2 [Operating
Systems]: Storage Management – allocation/deallocation
strategies, secondary storage.

General Terms
Measurement, Performance, Experimentation.

Keywords
Data layout, parallel file systems, parallel I/O

1. INTRODUCTION
High-performance computing (HPC) has crossed the Petaflop
mark and is moving forward to reach the Exaflop range [15].
However, while computing resources are making rapid progress,
there is a significant gap between processing capacity and data-
access performance. Due to this gap, although processing
resources are available, they have to stay idle waiting for data to
arrive, which leads to a severe overall performance degradation.
Figure 1 shows the number of CPU cycles required to access
cache memory (SRAM), main memory (DRAM), and disk storage
[2]. It can be seen that the number of cycles for accessing disks is
hundreds of thousands of times slower. This trend is predicted to
continue in the near future. In the meantime, applications are
becoming more and more data intensive. Due to the growing
performance disparity and emerging data intensive applications,
I/O and storage have become a critical performance bottleneck in
HPC machines, especially when we are dealing with petascale

data storage.

Data layout mechanism decides how data is distributed among
multiple file servers. It is a crucial factor that decides the data
access latency and the I/O subsystem performance for high-
performance computing. The recent work in log-like reordering of
data [1][7] has demonstrated the importance and performance
improvement by arranging data in a proper manner. However,
historically, parallel I/O middleware systems, such as ROMIO
[14], and parallel file systems are developed separately with a
simplified modular design in mind. Parallel I/O middleware
systems often assume the underlying is a big file system, and, on
the other hand, parallel file systems often rely on the I/O
middleware for data access optimization and do little in data
layout optimization. In this study, we argue that purely
depending on I/O middleware for data retrieval optimization is
costly and may not be effective in many situations. We argue that
if we pass some of the application-specific I/O request
information to file systems for data layout optimization, the
results could be much better. Existing parallel file systems, such
as PVFS2 [3], Lustre [5], and GPFS [11] provide high bandwidth
for simple, well-formed, and generic I/O access characteristics,
but their performance varies from application to application
[4][8]. Tuning data layout according to specific I/O access
patterns for a parallel I/O system is a necessity. This tuning
requires understanding file system abstractions, gaining
knowledge of disk storage, knowing the designs of high-level
libraries, and making intelligent decisions. While PVFS2 and
high-level parallel I/O libraries, such as MPI-IO [13] and HDF-5
[12] provide some functionality to customize data layout
according to specific I/O workloads, few know how to use them
effectively.

1

10

100

1K

10K

100

1M

10M

C
yc

le
s

1980 1985 1990 1995 2000 2005 2010

Year

Data Access Time in CPU Cycles

SRAM DRAM Disk

Figure 1. Comparison of data access latency.

In this research, we study data layout optimization of parallel file
systems. We show that, with the consideration of application-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Supercomputing PDSW'09, Nov. 15, 2009. Portland, OR, USA.
Copyright © 2009 ACM 978-1-60558-883-4/09/11... $10.00

specific I/O request, the data layout optimization can be totally
different in a parallel file system. We present a system-level
application-specific data layout optimization strategy for
petascale data storage. By system-level, we mean that the
proposed approach is integrated into the file system and is
transparent to programmers and users. By application-specific, we
mean that the proposed approach can adapt to specific data access
patterns for a proper data layout. The contribution of this study is
two folds. First, we show that the data layout optimization has a
significant impact on petascale data storage performance. Second,
we demonstrate with a simple performance model and current
simple data layout functionalities provided by PVFS2 that we can
achieve noticeable performance gain. While our results are
preliminary, they demonstrate the potential of the data layout
optimization approach.

2. APPLICATION-SPECIFIC DATA
LAYOUT MODELING
Modeling and evaluating the performance of data layout strategy
is essential in providing an application-specific data layout
optimization. The conventional round-robin distribution (referred
to as simple striping in some existing work) is in place in many of
parallel file systems [3][5][11]. However, under parallel I/O
systems, this simple distribution may not be the best data layout
and can be improved.

We present a simple data layout performance model herein. In
this model, we assume that the connection between compute (I/O)
nodes and file servers is not a performance bottleneck and that the
significant overhead is in accessing file servers. We further
assume that each file server’s performance can be measured as
α+sβ, where α is the start up time (latency), s is the data size, and
β is the transmission time of single unit data (the reciprocal of
transmission rate).

In this model, we differentiate three data layout strategies, 1-D
Horizontal Layout, 1-D Vertical Layout and 2-D Layout. The 1-D
Horizontal Layout (or 1-DH in short) refers to the strategy that
data is distributed among all available file servers in a traditional
round-robin fashion. This layout matches with the existing simple
striping or round-robin strategy. The 1-D Vertical Layout (or 1-
DV in short) refers to the strategy that data to be accessed by each
process is stored on one given file server. The 2-D Layout (or 2-D
in short) is the strategy in which data to be accessed by each
process is stored on a subset of file servers. Figure 2 illustrates
these three strategies with an example.

Assume that we have p computing (I/O) nodes, n file servers,
where all computing nodes participate in an SPMD form of
parallel computing, with a block-cyclic or some similar, even data
partitioning. With 1-DH data layout, i.e., with simple striping
round-robin layout where exactly s/n of the data are in any of the
n file servers, the cost of accessing data of size s by one process
and p processes are:

)(βα
n
s

+

and)(βα
n
sp + = βα

n
psp + (1)

respectively. With the 1-DH layout, each process accesses its
required data concurrently, but multiple processes have to access
data one by one sequentially; and the data of each process is
distributed over different file servers evenly. This strategy makes

accesses in a “sequential concurrent” way. The value of Equation
(1) depends on the value of p, n, α and β. In any case, however,
the 1-DH layout or the conventional round-robin layout may not
be the best choice when p ≥ n. If we take the 1-DV layout, i.e.
taking a “concurrent sequential” approach, we can get a better

performance, with ()p s
n

α β⎡ ⎤ +⎢ ⎥⎢ ⎥
. If p < n, then the data can be

stored either on n servers using 1-DH layout or using 2-D layout,
where each of the p processes gets n/p file servers for data
storage. For the former layout, the cost is α+sβ and for the latter

case, the cost is s
n
p

α β+
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

. . .P0

. . .P1

. . .P2

. . .P3

1‐DH Layout 1‐DV Layout 2‐D Layout

()s psp p
n n

α β α β+ = + sα β+ ()p s
n

α β⎡ ⎤ +⎢ ⎥⎢ ⎥
or

s
n
p

α β+
⎢ ⎥
⎢ ⎥
⎣ ⎦

Figure 2. Data layout strategies.

3. APPLICATION-SPECIFIC DATA
LAYOUT OPTIMIZATION
With application-specific data layout modeling, we are able to
guide data layout towards a better way by considering data access
characteristics. With the value of p, n and α, β, the proper data
layout can be determined with the aforementioned data layout
formulas for a given parallel I/O request. The data layout of a
given application can then be determined based on the weighted
summation of the costs of its I/O requests. The above model is
deterministic and is ready to use under existing parallel file
systems, such as PVFS2. In addition, in parallel I/O applications,
it is common that an application accesses multiple files and each
file in multiple occasions. We store each file in a different layout
to improve performance. When an application accesses a file in
multiple patterns, it is necessary to find a layout that is beneficial
for all patterns. For example, a file is read in contiguous access
pattern and written in a complex non-contiguous pattern. From
many observations [8][13], accessing data in non-contiguous
patterns performs worse than accessing contiguously. Storing data
to facilitate non-contiguous accesses may deteriorate contiguous
access performance. We have to find a balance between
performance benefits when we decide on performance layouts.
Based on pattern analysis, we can utilize a strategy by assigning
each pattern a weight to represent its scope for I/O performance
improvement.

Based on the modeling and observations, we define a set of data
layout heuristics as shown in Table 1. When I/O access
characteristics are unknown or completely random, we rely on 1-
DH strategy or the default simple round-robin strategy. When the
degree of I/O concurrency is high, it is beneficial to use 1-DV
layout. 1-DH layout or 2-D layout can be configured for low
degree of concurrency. In case of TCP Incast [10], it is better to
stripe data among a certain set of file servers instead of all
available file servers, which is 2-D layout. File systems such as
PVFS2 provide features to extend and create new distributions
[9]. We utilize these features in generating new application-
specific distributions in our implementation.

Table 1. Heuristics for Choosing Layouts

Access Pattern Feature Data Layout Strategy

Random 1-DH (round-robin) layout

High degree of I/O concurrency 1-DV data layout

Low degree of I/O concurrency 1-DH or 2-D data layout

Too many I/O servers on TCP/IP 2-D data layout

After making decisions on the layout, we store data on file servers
using the new layout. The 1-DH layout strategy, or the simple
round-robin layout, with different stripe size and striping factor
can be set with MPI-IO hints, such as striping_factor and
striping_unit. A more complex distribution, such as 1-DV or 2-D
data layout, needs to be modified at the file system level to
provide general support, but can be emulated with different
striping_factor and striping_unit configurations. In addition, it is
common for parallel file systems, such as PVFS2, to provide
flexible and extendable data distributions [9]. PVFS2 includes a
modular system for adding new data distributions to the system
and using these for new files and optimized layouts. Since our
current implementation focuses on prototyping the idea and
verifying the potential performance gain, we employ a relatively
quick prototyping strategy by using parallel file system
configurations to provide support for various layout strategies.
The current prototyping system has demonstrated a significant
performance improvement over existing strategies as the
following section shows. A general full-fledged data layout
strategy support at parallel filesystem level is under development
as well.

4. PRELIMINARY EXPERIMENTAL
RESULTS
We have carried out a prototype implementation of application-
specific data layout on PVFS2 parallel file system based on the
previously discussed model and optimization strategy. We
currently support three strategies, 1-DH, 1-DV and 2-D layouts.
The following subsections present the initial experimental results
of these application-specific strategies under different scenarios.

4.1 Experimental Setup
Our experiments were conducted on a 17-node Dell PowerEdge
Linux-based cluster and a 65-node Sun Fire Linux-based cluster.
The Dell cluster is composed of one Dell PowerEdge 2850 head

node, with dual 2.8 GHz Xeon processors and 2 GB memory, and
16 Dell PowerEdge 1425 compute nodes with dual 3.4 GHz Xeon
processors and 1 GB memory. The head node has two 73 GB
U320 10K-RPM SCSI drives. Each compute node has a 40 GB
7.2K-RPM SATA hard drive. The Sun cluster is composed of one
Sun Fire X4240 head node, with dual 2.7 GHz Opteron quad-core
processors and 8GB memory, and 64 Sun Fire X2200 compute
nodes with dual 2.3GHz Opteron quad-core processors and 8GB
memory. The head node has 12 500GB 7.2K-RPM SATA-II
drives configured as RAID-5 system. Each compute node has a
250GB 7.2K-RPM SATA hard drive. The experiments were
tested on PVFS2 file system. For the Dell cluster, PVFS2 was
configured with one metadata server node, the head node, and 8
I/O server nodes. All nodes are used as compute nodes. For the
Sun Fire cluster, PVFS2 was configured with 32 I/O server nodes.
The rest nodes are used as compute nodes.

4.2 Experimental Results and Analyses
4.2.1 Synthetic Benchmark
We have coded a synthetic benchmark which does sequential
reads over the file stored with different layouts. We have
performed a series of tests on the Dell cluster. The first set of
experiments conducted is to compare the performance of different
layout strategies with four compute processes. In this scenario,
four processes retrieve data from 64MB, 160MB, 320MB, 800MB
and 2000MB files respectively. These files are stored on eight
file servers with three layouts, 1-DH, 1-DV and 2-D. We
measured the performance of retrieving data in each case and the
results are shown in Figure 3. The reported results are the average
of three runs. We flushed the system buffer cache between each
run.

0

2

4

6

8

10

12

14

64MB 160MB 320MB 800MB 2000MB

Ti
m
e
(s
ec
on

ds
)

File Size

1‐DH Layout 1‐DV Layout 2‐D Layout

Figure 3. I/O performance with different layout strategies.

Figure 3 clearly shows that different layout strategies do have a
considerable impact to the performance of parallel I/O system.
Among three layouts, the 2-D layout achieved the best
performance in all cases. This is consistent with our model and
analysis that the 2-D layout is desired when the number of
compute processes is less than that of I/O server nodes. In the
meantime, the 1-DH layout, or the default round-robin layout,
performed worse than both 1-DV and 2-D layouts, and the
performance disparity was up to 48.8%.

We have also performed a detailed analysis to verify the proposed
model. We compute the theoretical value with the model and the
measured disk transfer time and startup time. The theoretical and
experimental results are shown in Figure 4 (1-DH layout is
omitted here due to the space limit). As can be seen from the
results, there is a close match between the experimental results
and theoretical results, which shows the model can estimate the
performance of these layout strategies well.

0

2

4

6

8

10

12

14

64MB 160MB 320MB 800MB 2000MB

Ti
m
e
(s
ec
on

ds
)

File size

Experimental Theoretical

0

2

4

6

8

10

12

14

64MB 160MB 320MB 800MB 2000MB

Ti
m
e
(s
ec
on

ds
)

File size

Experimental Theoretical
Figure 4. Experimental and theoretical results.

(Left: 1-DV layout; Right: 2-D layout)
The other set of experiments we have conducted is to compare the
impact of layout strategies with 16 compute processes. This set of
tests is similar with the previous tests, but the file sizes are
doubled in order to compare the performance with various file
sizes. The results show that 1-DV layout outperformed the other
two strategies in all cases, which is consistent with the model and
analysis presented in Section 2. The results are shown in Figure 5.

0

5

10

15

20

25

30

35

128MB 320MB 640MB 800MB 4000MB

Ti
m
e
(s
ec
on

ds
)

File Size

1‐DH Layout 1‐DV Layout 2‐D Layout

Figure 5. I/O performance with different layout strategies.

4.2.2 IOR Benchmark
In addition to the synthetic benchmark measurement, we have
performed a series of testing on the Sun cluster with the IOR-
2.10.2 benchmark from Lawrence Livermore National Laboratory
[6]. In these experiments, we performed a larger scale of testing.
We configured PVFS2 with 32 I/O server nodes and run testing
with 64 processes on 32 client nodes (client nodes are separate
from I/O server nodes). We performed both sequential
reads/writes and random reads/writes tests, and varied the stripe
size and the file size. Figure 6 and Figure 7 report the bandwidth
results of accessing files with different layouts in a random or
sequential manner, respectively, with 64KB stripe size for 1-DH
and 2-D layouts. Figure 8 and Figure 9 report the results in a
similar scenario, but with 1MB stripe size for 1-DH and 2-D
layouts.

0

50

100

150

200

250

300

64 128 256 512 1024 2048 4096 8192 16384

1‐DH_R

1‐DH_W

2‐D_R

2‐D_W

1‐DV_R

1‐DV_W

Ba
nd

w
id
th
(M

B/
s)

Filesize (MB)
Figure 6. Random reads/writes with 64KB stripe size.

0

50

100

150

200

250

300

64 128 256 512 1024 2048 4096 8192 16384

1‐DH_R

1‐DH_W

2‐D_R

2‐D_W

1‐DV_R

1‐DV_W

Ba
nd

w
id
th
(M

B/
s)

Filesize (MB)
Figure 7. Sequential reads/writes with 64KB stripe size.

0

50

100

150

200

250

300

64 128 256 512 1024 2048 4096 8192 16384

File Size (MB)

1‐DH_R

1‐DH_W

2‐D_R

2‐D_W

1‐DV_R

1‐DV_W

Ba
nd

w
id
th
 (M

B/
s)

Figure 8. Random reads/writes with 1MB stripe size.

0

50

100

150

200

250

300

64 128 256 512 1024 2048 4096 8192 16384

File Size (MB)

1‐DH_R

1‐DH_W

2‐D_R

2‐D_W

1‐DV_R

1‐DV_W

Ba
nd

w
id
th
(M

B/
s)

Figure 9. Sequential reads/writes with 1MB stripe size.

As can be seen from these results, different layout strategies can
affect the IOR benchmark testing performance considerably.
Among the three strategies we specifically analyze, the 1-DV
strategy generally performs better than the other two, while the 2-
D strategy performs better than the 1-DH strategy.

Although the current experimental results are preliminary, they
have demonstrated that data layout strategies have a considerable
impact on parallel I/O systems. The proposed model and
application-specific data layout optimization are desired to
dynamically adapt the layout to achieve a better performance
under different scenarios.

5. ONGOING WORK
We have reported some of initial results, while several studies are
ongoing and are not ready to report at this time. For instance, we
are working on a comprehensive data layout model to characterize
the performance impact of layout strategy in general cases based
on probability and queuing theory. The basic idea of the general
model is that each I/O node can be modeled as an independent
queue. I/O requests come into these queues and are serviced for
either storing or retrieving data. When contention occurs, the
request has to wait in the queue to be serviced. Multiple queues
are independent from each other, and data layout optimization on
parallel file servers are derived accordingly. This model
characterizes concurrency (parallelism) and contention, two major
roles that data layout strategy plays in affecting the system
performance, to guide an optimal layout selection. We have
developed a theoretical model and are working on the
experimental part to verify the model. We are also moving the
experimental testing to a much larger computer cluster than what
we have used.

6. CONCLUSION
Parallel I/O middleware and parallel file systems are fundamental
and critical components for petascale storages. While both of the
technologies have made their success, little has been done to
application-specific data layout. In most existing file systems,
data is distributed among multiple servers primarily with a simple
round-robin strategy. This simple data layout strategy does not
always work well for parallel I/O system, where I/O requests are
generated concurrently. In this study, we have proposed an
application-specific data layout strategy to optimize the
performance of accessing data according to distinct application
features. This data layout strategy optimization is built upon a
simple but effective data layout model, and has been prototyped
with the configuration facility of the underlying PVFS2 parallel
file system.
Parallel file systems have been designed as one-set-for-all and
have been static. There is a great need for research into next-
generation I/O architectures to support access awareness,
intelligence, and application-specific adaptive data distribution
and redistribution. Although our current results are very limited,
our prototyping system has demonstrated the great potential in
improving parallel I/O access performance via data layout
optimization when access characteristics are taken into
consideration. We believe that the application-specific data layout
optimization approach needs a community attention. This
approach appears to be a feasible solution to mitigating the I/O
wall problem, especially for petascale data storages.

7. ACKNOWLEDGMENTS
The authors are thankful to Dr. Rajeev Thakur, Dr. Rob Ross and
Sam Lang of Argonne National Laboratory for their constructive
and thoughtful suggestions toward this study. This research was

supported in part under NSF grant CCF-0621435 and CCF-
0937877.

8. REFERENCES
[1] J. Bent, G. Gibson, G. Grider, B. McClelland, P.

Nowoczynski, J. Nunez, M. Polte, M. Wingate, “PLFS: A
Checkpoint Filesystem for Parallel Applications,” in Proc. of
ACM/IEEE SuperComputing'09.

[2] R. E. Bryant and D. O'Hallaron, “Computer Systems: A
Programmer's Perspective,” Prentice-Hall, 2003.

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur,
“PVFS: A Parallel File System For Linux Clusters,” in
Proceedings of the 4th Annual Linux Showcase and
Conference, 2000.

[4] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed,
“Input/Output Characteristics of Scalable Parallel
Applications,” in Proceedings of the ACM/IEEE Conference
on Supercomputing, 1995.

[5] Cluster File Systems Inc., “Lustre: A Scalable, High
Performance File System,” Whitepaper,
http://www.lustre.org/docs/whitepaper.pdf.

[6] Interleaved or Random (IOR) Benchmark,
http://sourceforge.net/projects/ior-sio/.

[7] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki and C.
Jin, “Flexible IO and Integration for Scientific Codes
Through the Adaptable IO System (ADIOS),” in Proc. of the
6th International Workshop on Challenges of Large
Applications in Distributed Environments, 2008.

[8] J. May, “Parallel I/O for High Performance Computing,”
Morgan Kaufmann Publishing, 2001.

[9] PVFS2 Development Team, “PVFS Developer's Guide,”
http://www.pvfs.org/cvs/pvfs-2-8-branch-docs/doc//pvfs2-
guide.pdf.

[10] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G.
Ganger, G. Gibson and S. Seshan, “Measurement and
Analysis of TCP Throughput Collapse in Cluster-Based
Storage Systems,” in Proceedings of File and Storage
Technologies (FAST), 2008.

[11] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File
System for Large Computing Clusters,” in 1st USENIX
Conference on File and Storage Technologies, USENIX,
2002.

[12] The HDF5 Project, HDF5 - A New Generation of HDF,
NCSA, Univ. of Illinois at Urbana Champaign. Available at
http://hdf.ncsa.uiuc.edu/HDF5.

[13] R. Thakur, W. Gropp and E. Lusk, “Optimizing
Noncontiguous Accesses in MPI-IO,” Parallel Computing,
(28)1:83-105, 2002.

[14] R. Thakur, W. Gropp and E. Lusk, “Data Sieving and
Collective I/O in ROMIO,” in Proceedings of the 7th
Symposium on the Frontiers of Massively Parallel
Computation, 1999.

[15] Top 500 Supercomputing Website. http://www.top500.org.

