
Scalable I/O Tracing and Analysis

Karthik Vijayakumar 1 Frank Mueller 1 Xiaosong Ma 1,2 Philip C. Roth 2

1 Department of Computer Science, North Carolina State University, Raleigh, NC 27695-7534
2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract
As supercomputer performance approached and then surpassed the
petaflop level, I/O performance has become a major performance
bottleneck for many scientific applications. Several tools exist to
collect I/O traces to assist in the analysis of I/O performance prob-
lems. However, these tools either produce extremely large trace
files that complicate performance analysis, or sacrifice accuracy to
collect high-level statistical information. We propose a multi-level
trace generator tool, ScalaIOTrace, that collects traces at several
levels in the HPC I/O stack. ScalaIOTrace features aggressive trace
compression that generates trace files of near constant size for reg-
ular I/O patterns and orders of magnitudes smaller for less regular
ones. This enables the collection of I/O and communication traces
of applications running on thousands of processors.
Our contributions also include automated trace analysis to col-

lect selected statistical information of I/O calls by parsing the com-
pressed trace on-the-fly and time-accurate replay of communica-
tion events with MPI-IO calls. We evaluated our approach with the
Parallel Ocean Program (POP) climate simulation and the FLASH
parallel I/O benchmark. POP uses NetCDF as an I/O library while
FLASH I/O uses the parallel HDF5 I/O library, which internally
maps onto MPI-IO. We collected MPI-IO and low-level POSIX
I/O traces to study application I/O behavior. Our results show con-
stant size trace files of only 145KB irrespective of the number of
nodes for FLASH I/O benchmark, which exhibits regular I/O and
communication pattern. For POP, we observe up to two orders of
magnitude reduction in trace file sizes compared to flat traces. Sta-
tistical information gathered reveals insight on the number of I/O
and communication calls issued in the POP and FLASH I/O. Such
concise traces are unprecedented for isolated I/O and combined I/O
plus communication tracing.

1. Introduction
Analyzing I/O behavior of parallel applications is a difficult prob-
lem. As shown in Figure 1, the compute node I/O stack is increas-
ingly complex, complicating investigation of the I/O behavior of
applications. This is especially true for parallel I/O, due to the
multi-level layering of I/O modules and architectural variations in
storage systems. Although these layers provide essential abstrac-
tions to the end user by hiding complex implementation details be-
hind simpler interfaces, these details ultimately impact the actual
behavior of any I/O call issued at high-level layers. These abstrac-
tions may also hide any inherent performance bottleneck caused
by poor implementation at lower layers, such as low-level synchro-
nization issues.

ACM acknowledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.
Supercomputing PDSW’09, Nov. 15, 2009. Portland, OR, USA.
Copyright c© 2009 ACM ISBN 978-1-60558-883-4/09/11. . . $10.00.












Figure 1. Typical Compute Node I/O Stack

Several studies have been conducted to analyze the I/O behav-
ior of parallel applications. Because that behavior can be difficult to
understand due to the complex interactions between the various lay-
ers of the I/O software stack, application I/O kernels and I/O event
trace analysis have been designed to simplify the analysis. Applica-
tion I/O kernels like Flash I/O [1] are abstracted from a full applica-
tion, retaining the application’s I/O behavior while simplifying or
eliminating its computation and communication. However, keep-
ing such I/O kernels up-to-date requires substantial effort and man-
power particularly when the original application changes. I/O event
tracing provides an alternative to application I/O kernels. I/O traces
can be readily generated by instrumenting an application with an
event trace capture library and then simply running an application.
However, the resulting traces can be large and remain architecture
specific, raising scalability concerns on large-scale machines. The
trace file size is particularly an issue with I/O behavior monitoring,
as such trace file accesses bring disturbance to the I/O system and
may distort timing and performance information recorded from the
application while our approach is minimally intrusive.
When capturing data about program and system events, most

tracing tools also capture time stamp information, which is essen-
tial to analyze bottlenecks and to facilitate what-if analyses that
assess the impact of changing key system architecture aspects such
as network bandwidth or latency. There can be three types of traces
based on whether and how timing information is collected: (a) time-
stamped traces and (b) time-aggregate traces and (c) time-agnostic
traces. Time-stamped traces provide exact timing information of
each trace event, time-aggregate traces provide statistical time-
stamp information per event and time-agnostic traces simply record
events without collecting any timing information. Our approach ini-
tially captures the actual delta time between any two consecutive
trace events during event recording and also preserves the order
of events [16]. In SPMD programs, fine-grained clock skews and
diverging computational progress often cause delta times to differ
from one iteration to another as well as across nodes, and even the
smallest differences would prevent compression. To keep the trace
file size at bay, we not only compress repeating events but also ag-
gregate timing information in the form of histogram bins. Nonethe-
less, we maintain information about timing outliers in terms of the
observed delta time as well as the responsible node, which is suffi-

cient to determine the cause of communication inefficiencies, such
as load imbalance.
Contributions: This paper contributes ScalaIOTrace, a toolset for
scalable I/O trace collection and effective replay that performs
efficient and flexible trace analysis independent from the original
application. Our contributions include:
• We provide the capability to record traces at several layers
of abstraction in the software stack of system and library I/O
interfaces;

• we create novel capabilities to automate trace analysis for col-
lecting statistical information from the traces;

• we support I/O replay capability in ScalaIOTrace optionally
combined with MPI communication replay;

• we provide an extensible approach to trace events and facilitate
future user enhancements, customization and integration with
other performance analysis tools.
To evaluate the benefits of ScalaIOTrace, we conducted ex-

periments using Parallel Ocean Program (POP) application and
FLASH I/O benchmark to collect I/O traces at multiple layers. We
collected statistical information on file read/write and communica-
tion operations of POP and FLASH I/O.

2. Related Work
Many event trace capture and analysis tools have been developed,
such as TAU [17], Vampir [12], Paraver [15] and SCALASCA [5].
These tools support the collection of detailed data about program
events, including communication and I/O events. Most of these
tools collect traces using a library instrumentation in a similar fash-
ion as our work, but few employ an event trace compression mech-
anism to control trace data volume. One recent exception are tools
supporting the Open Trace Format (OTF) [8]. OTF uses zlib com-
pression on blocks of data, which limits compression effectiveness
and also precludes any analysis on the compressed format. Dur-
ing trace analysis or replay, the original traces have to be recon-
structed, which is again inefficient and does not scale. Our work
performs trace analysis without the need to reconstruct the original
trace from the compressed trace and without losing any structural
information even in its compressed representation.
Gao et al. [4] developed an event trace compression technique

that performs static analysis on the application binary and collects
loops and functions as structures. Along with the structure, a path
grammar is constructed. Path grammars are then utilized to encode
paths taken during execution. These structures are compressed in-
dividually and stored. Even the iteration count is stored along with
the compressed structure traces. This loosely resembles the RSD
and PRSD technique used in our work [6, 10, 13, 16]. Unlike their
work, our tool does not require the construction of grammars for in-
dividual applications separately. Our work employs a generalized
trace compression approach based on call path stacks. It is suffi-
cient to link the tool library along with the application to collect
traces. This generalization also enables comparative trace studies
between two different applications.
Lu and Shen [9] proposed multi-layer event tracing and analy-

sis to identify the system layers responsible for performance bottle-
necks. Their evaluation was limited to very small systems (at most
16 nodes) and their approach does not employ any compression
mechanism. With traces collected from many different layers of I/O
subsystems, there will be unmanageable increases in the trace file
size when 100s or 1000s of nodes are used. They have also provided
interesting results on performance issues on parallel file system due
to constraints at the operating system level using trace analysis. In
contrast, our tool enables trace analysis using compressed traces
and with even the potential to automate trace analysis by perform-

ing a stack walk to identify the layering information using recorded
stack signatures along with event traces.

3. Background
Our work builds on ScalaTrace [14], a tool that collects commu-
nication traces from large-scale parallel application runs with ef-
ficient, lossless online trace compression. It also preserves timing
information in the compressed form along with the calling context
of MPI calls [16]. In this paper, we examine the efficacy and perfor-
mance of ScalaIOTrace, which is built on ScalaTrace. ScalaIOTrace
collects compressed MPI-IO as well as POSIX I/O system calls.
ScalaTrace uses the MPI Profiling layer (PMPI) [11] through

Umpire [18] to intercept MPI calls and collects MPI traces. It per-
forms two types of compression: intra-node and inter-node, mo-
tivated by the temporal and spatial similarity in parallel simula-
tions’ execution due to the SPMD programming paradigm. Intra-
node compression exploits the repetitive nature of timestep sim-
ulation and is performed on-the-fly during trace collection. Inter-
node compression, in contrast, exploits the homogeneity in behav-
ior among different processes. It is performed before MPI Finalize
and compresses traces collected from all nodes into a single file.
ScalaTrace compression algorithms and data structures are dis-

cussed in detail in previous work [14][16]. Here, we briefly intro-
duce several of its key ideas and techniques relevant to I/O trac-
ing. ScalaTrace captures MPI events in innermost loop as Regular
Section Descriptors (RSD) [6] while power-RSDs capture RSDs in
higher-level loop nests in a constant size [10]. Consider the exam-
ple in the following code snippet:
for(i = 0; i < 10; i++) {

MPI_File_open(...); // Open 10 different files
for(j = 0; j < 100; j++) {

compute1();
MPI_File_write(...); // Write call

}
MPI_File_close(...);

} I/O trace compression with PRSDs results in the following
tuples: RSD1: < 100, MPI File write > denotes a loop with 100
iterations of MPI File write and PRSD1: < 10, MPI File open,
RSD1, MPI File close > represents the embedding of the inner
loop in the outer one consisting of 10 iterations with additional I/O
operations.
Another important feature of ScalaTrace is the time preservation

of captured traces. Instead of recording absolute timestamps, the
tool records delta time of computation between adjacent communi-
cation calls. During RSD formation, instead of accumulating exact
delta timestamps, statistical histogram bins are utilized to concisely
represent timing details across the loop. These bins are comprised
of statistical timing data (minimum, maximum, average and stan-
dard deviation). More details on collecting statistical timing infor-
mation are provided in [16].

4. Multilevel I/O Trace Collection
File I/O operations in large-scale scientific applications typically
go through a multi-level software stack, such as the one depicted
in Figure 1. A parallel application often performs file I/O through
high-level scientific data format libraries, such as HDF5 [2] and
netCDF [3], where shared file access capabilities may be built on
general-purpose parallel I/O libraries such as MPI-IO. Applications
may also directly use MPI-IO interfaces to perform parallel I/O,
where the I/O operations are passed to the parallel file system
clients running on each compute node. Eventually, I/O calls are
made through the system I/O libraries.
With such an increasingly deep I/O stack, I/O performance

depends not just on application access behavior, but also on the

interaction between different abstraction layers. It is important to
isolate an application’s behavior at a certain level, or to correlate
activities at multiple levels. With our prototype system, we make
initial effort to expose these layers and enable the analysis of multi-
level traces in a scalable way, to better understand I/O behavior of
an application on a specific architecture.
In our prototype implementation, ScalaIOTrace collects traces

of MPI-IO and low-level POSIX I/O function calls. Both MPI-
IO and POSIX calls represent the high and low levels of the I/O
software stack. ScalaIOTrace can, of course, be extended further to
collect traces at any layer.

4.1 MPI-IO Trace Generation
At the surface, the methodology to collect MPI-IO traces resem-
bles trace collection of MPI communication calls. ScalaIOTrace
contains an interposition engine based on the Umpire tool [18] to
automatically create wrappers for trace events from a specification
of the corresponding instrumentation actions. The wrapper engine
generates modules that assist in trace collection (header files, a
wrapper file containing all MPI function overrides, and lookup files
containing details of MPI functions used internally).
However, certain I/O function parameters, such as file name,

offset and MPI File opaque objects, require special handling to
achieve scalable trace compression, as detailed below.
Regarding file names, we consider several widely used ap-

proaches for performing periodic I/O in parallel applications. In
many applications, all processes send output data to a root pro-
cess (process 0), which then performs I/O. Alternatively, all pro-
cesses may use parallel I/O to write one or more shared check-
point/snapshot files, either with collective or individual I/O calls.
In a third and currently less common approach, each process cre-
ates its own output file. The checkpoint files and/or snapshot files
are written periodically, typically once per c (where c is some con-
stant) timesteps, identified by a timestep number in the file name. In
case separate files are created per process, files are typically differ-
entiated by encoding the process/node rank in file names. For effi-
cient intra- and inter-node trace compression, ScalaIOTrace parses
the file names to identify the “static” and “dynamic” component
strings. For example, file names checkpoint-001-0.nc, checkpoint-
001-1.nc, etc. will be recognized as having static components of
“checkpoint-001-” and “.nc”. During compression, file names from
disjoint nodes are merged into a single event if the static file name
components match. Process ranks can be substituted by RSDs,
which are expanded during replay (see below).
Similarly, ScalaIOTrace needs to identify and merge parallel

MPI-IO accesses to shared files across I/O timesteps and across
processes. For example, assume each of 10 nodes writes a disjoint
range of 1000 bytes in a shared file, i.e. node 0 accesses the byte
range of [0,999], node 1 accesses [1000,1999], etc. ScalaIOTrace
encodes such access pattern into three fields (start position, stride,
and the total number of elements) during intra- and inter-node
compression, so that multiple file accesses with the same call stack
will be compressed into a single event.
Finally, MPI File handles representing file objects are opaque

pointers handled internally by the MPI library and do not exhibit
repetitive patterns. ScalaIOTrace stores these handles in a buffer,
added upon the file open operation. Subsequent accesses to open
files are recorded by referencing the corresponding handle’s offset
in the buffer rather than the handle itself. This allows us to com-
press and replay the I/O traces appropriately.
Apart from MPI-IO calls, ScalaIOTrace provides support

to record traces for creating custom data types, such as
MPI Type create darray, which are widely used in collective file
accesses. These custom data type handlers are also opaque pointers
and are treated in the same manner as file handlers.

4.2 POSIX I/O Trace Generation
ScalaIOTrace also collects traces from POSIX I/O calls. Compared
to MPI-IO, POSIX I/O calls belong to the lower level in the I/O
stack and potentially can provide more information on the actual
requests made to the parallel file system. Tracing POSIX calls
can help in identifying performance bottlenecks in the middle and
lower I/O stack layers, as well as in capturing I/O activities that do
not go through a higher-level I/O library. Many of ScalaIOTrace’s
techniques in MPI-IO trace collection, compression, and replay
can be applied to POSIX I/O as well. We discuss several POSIX-
specific design and implementation issues below.
We exploited GNU linker’s link time function interposition fa-

cility to provide instrumentation for POSIX I/O calls and to collect
traces. The “–wrap” option enables function calls, such as open,
write, etc., to be redirected to corresponding interposition functions
(e.g., wrap open()). The interposition wrappers implement trace
collection and call the corresponding native (actual) function (e.g.,
real open()). ScalaIOTrace provides a separate library for POSIX
wrappers, which, together with the ScalaIOTrace library, is stati-
cally linked with the application using the link switch “–wrap” to
signify which I/O functions are interposed.
Most of the function parameters in POSIX calls are simi-

lar to those of MPI-IO calls (e.g., file name, number of bytes
read/written). During our initial testing with ScalaIOTrace, we dis-
covered that several files had been opened even before application
execution and thus prior to our I/O interpositioning. These activities
are accessing the internally managed resources and sockets opened
by the MPI runtime system. We observed many I/O calls on these
files during the initialization phase to coordinate application exe-
cution and system activity. Since these I/O calls were outside the
application scope, we filtered them out by recording the traces with
the files opened only after MPI Init.

5. Trace Analysis
Our prototype ScalaIOTrace implementation not only supports
scalable tracing, it also supports a scalable replay engine. Given
a single, compressed trace file, the replay engine allows all I/O and
communication calls to be reissued without trace decompressing
while preserving event ordering. For this process, the replay engine
runs as an MPI job with the same number of tasks as its original
application. It then replays I/O and communication events in each
node with their original parameters except for actual file content
/ message payloads. Instead, a random buffer of the same size as
the original file/message buffer is utilized. Additionally, computa-
tion time on each node is simulated by a delay between any two
I/O or communication calls based on recorded delta time. As delta
time is arranged in histograms, delays can be replayed such that the
computational time is resembled during replay through randomized
distribution of delta time delays over histogram information.
Based on this specialized replay facility, we designed a generic

and novel automated post-mortem trace analysis framework. Our
design provides generic event handlers for all recorded trace func-
tions. These handles can then be interposed or substituted by user-
specific code when the trace is traversed in our generic analysis
engine. While trace analysis could also be performed in a more
conventional manner during application execution with interposed
events within ScalaIOTrace, post-mortem generic trace analysis
provides several advantages. Conventional trace analysis requires
a priori knowledge about performance problems in order to col-
lect and correlate the subset of I/O and communication events that
may contribute to performance problems or application character-
ization footprints. Short of such a prior knowledge, conventional
trace analysis is generally repeated with different refinement steps,
which requires a separate application execution each time. In con-

trast, our generic post-mortem trace analysis facilitates the detec-
tion of anomalies or identification of communication patterns in the
applications by iterative refinement without re-running the applica-
tion. Instead, different trace analysis interposition functions at the
replay level operate directly on compressed traces, and by omitting
time-accurate replay, can be traversed rapidly taking only a fraction
of the original application’s execution time.
In this work, we exploit generic trace replay to demonstrate

its capabilities in one specialization example. By providing aggre-
gation interposition functionality, we obtain statistical details on
the number of I/O operations and collective/blocking/non-blocking
communication calls across all nodes. This could easily be refined
for group-specific analysis of MPI communicators or subsets of
traced events originating from certain code sections based on per-
call stack backtrace information.

6. Experimental Results
We evaluated our ScalaIOTrace prototype in two aspects: (1) its ef-
fectiveness of communication-I/O trace file compression, and (2)
its capability of collecting statistical information on I/O and com-
munication activities via replaying the compressed traces. For such
evaluation, we experimented with (1) a complex parallel I/O bench-
mark, Flash I/O [1], which is closely modeled after the FLASH
astrophysics code, and (2) a production-scale climate simulation
application, the Parallel Ocean Program (POP) [7]. More details on
these workloads are given below.
Our experiments were conducted on Jaguar, the Cray XT4 sys-

tem at ORNL. Each of its compute nodes contain a 2.1 GHz quad-
core AMD Opteron 1354 processor and 8GB of DDR2 memory.
The login nodes run a full-featured Linux version while the com-
pute nodes run the Compute Node Linux microkernel.
We collected trace that are (i) uncompressed, (ii) compressed

within each individual nodes (intra-node) and (iii) compressed both
within nodes and across all nodes resulting in a single file (inter-
node). Trace file sizes are assessed under strong scaling, where
we vary the number of nodes while keeping the overall problem
size fixed. Note that the effectiveness of trace compression should
be evaluated considering the application’s programming model and
computation behavior (such as regular vs. irregular). For example,
for regular SPMD codes, good compression across all nodes is
expected, as each of these nodes will be running the same program
working on disjoint yet similar datasets.
Regarding statistical information collection, we demonstrate

that our proof-of-concept prototype is able to perform post-mortem
analysis to examine the traces, such as how many calls have been
issued and how I/O operations behave under strong scaling. While
such statistics are common information items, ScalaIOTrace has
the unique advantage of avoiding either rerunning the application
or going through large-sized trace files. Tool features can be easily
extended in the future to plug in user supplied trace processing
routines for customized analysis.

6.1 Flash I/O Benchmark Results
Flash I/O simulates the I/O behavior of the FLASH application,
which is a block-structured adaptive mesh hydrodynamics code
[1]. The original benchmark distribution contains simulation using
two I/O methods, one with parallel HDF5 [2] and one with serial
f77 binary. For our experiments, we used a distribution modified
by Argonne National Laboratory, which is compatible with newer
versions of HDF5 as the API of newer versions of HDF5 is not
backward compatible with older versions. Parallel HDF5 internally
uses MPI-IO. As a result, all nodes are involved in I/O workload.
Figure 2 depicts the size of trace files generated by two ap-

proaches over increasing number of nodes, both on log scale. The
size of the uncompressed trace files grows linearly with increasing

Figure 2. Flash I/O Benchmark

number of nodes. The reason for this behavior is that each node
writes its own trace file and the number of files created grows with
the increase in the number of nodes. In contrast, the size of the
inter-node compressed traces is almost constant under strong scal-
ing. This behavior of perfect inter-node compression is attributed to
the SPMD programming style in the Flash I/O benchmark without
any data-dependent conditional statements. FLASH I/O does not
contain any loops. Hence, intra-node compressed traces are similar
to flat traces and thus omitted in the results.

#
nodes

MPI-
IO at
0

POSIX
I/O at 0

Comm.
at 0

MPI-
IO
Other

POSIX
I/O
Others

Comm.
Other

2-1024 194 171 299 85 56 299
Table 1. Number of Multi-Scale MPI/POSIX I/O and Communi-
cation Calls for Flash I/O

Table 1 shows the statistical information collected exploiting
ScalaIOTrace’s generic analysis feature with a specialized module
for aggregation of event statistics. It shows that FLASH I/O is-
sues the same number of I/O and communication calls under weak
scaling with increasing number of nodes while the overall output
file size increase due to the larger number of nodes. Since parallel
HDF5 uses MPI-IO, which in turn uses POSIX I/O, separate ag-
gregation results are reported for both MPI-IO and POSIX I/O. We
observe that the number of MPI-IO calls for both node 0 and all
others is greater than that of corresponding POSIX I/O calls. This
is due to MPI File set view calls issued before writing to the file.

6.2 Parallel Ocean Program Results
The Parallel Ocean Program (POP) is an ocean circulation model
developed at Los Alamos National Laboratory. It does not use
any parallel I/O library. Instead, node 0 collects output data and
generate netCDF files. POP can run with two resolutions, a lower
resolution grid (1 degree) and a higher resolution one (0.1 degree).
Our experiments exercises the lower resolution 1 degree grid in

this work. These experiments gives us the ability to analyze com-
pression effectiveness for production run applications. The prob-
lem size in case of a 1 degree grid is 320x384 and the individual
block size is 10x12 resulting in a total of 1024 (32x32) blocks dis-
tributed to individual nodes. We conducted experiments by varying
the maximum number of blocks assigned to each node.
Figure 3 shows the trace file size for different types of trace

collections by varying the maximum blocks allocated to nodes.

Figure 3. Parallel Ocean Program

The figure shows that intra-node compression alone can reduce
the trace file size by an order of magnitude. Not surprising, inter-
node compression brings further trace size reduction. However,
unlike observed in our previous experiment with FLASH I/O, inter-
node compression here fails to obtain near-constant trace file sizes.
Instead we see a linear increase in the file size up to 256 nodes.
Then, trace file sizes flatten for 512 and 1024 nodes since timestep
behavior becomes more regular at 1024 nodes resulting in more
effective inter-node compression at this size.
We also found that intra-node compression is not perfect for

executions across different timesteps. POP invokes a set of func-
tions in a loop that comprise one timestep iteration. The simulation
goes through multiple timesteps based on the number of simulation
days specified, where each simulation day consists of 46 timesteps.
We collected traces by running POP for 2 simulation days. By
trace file analysis, we determined that POP contains a precondi-
tioned conjugate solver problem, which is a typical ε convergence
problem, where a set of calculations are performed followed by
Send/Receive and All Reduce MPI calls. These calls and calcula-
tions iterate until the result converges. This results in different num-
ber of loop iterations due to data-dependent convergence points.
Hence, the PRSD information varies across different timesteps and
produces imperfect timestep loop compression. The trace file size
on each node would have been significantly smaller had there been
regular behavior for perfect compression across all timesteps.
Since this issue can also occur in other scientific applications,

we intend to introduce user-tunable imprecision in trace recording
in future work. The user can then specify an error percentage
during trace recording to address the compression issue discussed
above by merging two PRSD if iteration counts differences do not
exceed a given imprecision threshold. This solution generalizes to
other cases where a typical outer loop compression fails due to a
small number of irregular trace events caused by data-dependent
conditionals.
Table 2 shows the statistical information collected similar to

the one reported for FLASH I/O benchmark. Since only node 0
performs I/O operations, we report results for I/O operations and
collective (Coll.)/blocking (Block.)/non-blocking (NB) communi-
cation operations for node 0 separately and the average number of
operations for all other nodes. We identified that all of the blocking
communication calls at node 0 are I/O induced. This confirms that
using any parallel I/O methodology would have definitely reduced
the communication overhead involved in I/O.

#
nodes

I/O at
0

Coll. at
0

Block.
at 0

NB at 0 Coll.
Other

Block.
Other

NB
Other

2 1589 21247 129034 231714 21247 0 385350
4 1573 21257 179284 308952 21257 0 388838
8 1573 21277 210140 308952 21277 0 393393
16 1573 21317 1444912 386190 21317 0 447680
32 1573 21397 858648 386190 21397 0 451373
64 1573 12225 858648 386190 8575 0 382512
128 1573 21877 463372 386190 21877 0 441344
256 1573 22517 470288 386190 22517 0 426550
512 1573 23797 239932 386190 23797 0 424329
1024 1573 26357 240198 386190 26357 0 412485

Table 2. Number of I/O & Communication calls in POP

With more nodes, the average number of non-blocking calls
does not change significantly. This shows that the fraction of non-
blocking receives relative to the corresponding blocking sends from
node 0 is almost negligible. We also observe that the communica-
tion overhead increases due to strong scaling to solve the problem
across even larger number of nodes. We further infer from trace
analysis that communication is performed in sub-groups as the av-
erage non-blocking calls in other nodes is greater than that for node
0. We derived from the trace analysis that even collective opera-
tions, such as MPI Allreduce, are performed in sub-groups. This
is also the explanation for the difference in collective communica-
tion between node 0 and other nodes for the 64-node experiment.
Here, the collective operations at node 0 operate in one sub-group
while the average number of collectives across all the other nodes is
lower (dominated by other sub-groups). We manually verified the
correctness of this result.

7. Conclusion
We presented the design and implementation of ScalaIOTrace, a
multi-level I/O tracing approach that combines aggressive trace
compression, and a generic analysis tool that allows rapid post-
mortem traversal of tracing in their compressed format to gather
statistics, detect performance bottlenecks or analyze event prece-
dence orders. Experimental results demonstrate the ability to obtain
a single, near constant sized trace file of 145KB, irrespective of the
number of nodes, capturing I/O and communication of the FLASH
I/O benchmark. Trace sizes for POP grow under strong scaling but
remain up to two orders of magnitude smaller than without com-
pression. Such concise traces are unprecedented for isolated I/O
and combined I/O plus communication tracing. We further identify
challenges in compression due to application execution variability
and methodologies to address these in future work.

Acknowledgements
This work was supported in part by NSF grants 0237570 (CA-
REER), 0621470, 0937908, and 0429653. It was also supported
by a joint faculty appointment between Oak Ridge National Labo-
ratory and NC State University.
It was also sponsored in part by the Office of Advanced Scien-

tific Computing Research; U.S. Department of Energy. The work
was performed in part at the Oak Ridge National Laboratory, which
is managed by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725.
This research used resources of the National Center for Compu-

tational Sciences at Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the Department of Energy under
Contract DE-AC05-00OR22725.

References
[1] FLASH I/O benchmark routine.

http://www.ucolick.org/ zingale/flash benchmark io.
[2] Hierarchical data format. http://www.hdfgroup.org/HDF5.
[3] network common data form.

http://www.unidata.ucar.edu/software/netcdf/.
[4] X. Gao, A. Snavely, and L. Carter. Path grammar guided trace

compression and trace approximation. High-Performance Distributed
Computing, International Symposium on, 0:57–68, 2006.

[5] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker,
and B. Mohr. The scalasca performance toolset architecture. In
International Workshop on Scalable Tools for High-End Computing,
June 2008.

[6] P. Havlak and K. Kennedy. An implementation of interprocedural
bounded regular section analysis. IEEE Transactions on Parallel and
Distributed Systems, 2(3):350–360, July 1991.

[7] P.W. Jones, P. H.Worley, Y. Yoshida, J. B. White, III, and J. Levesque.
Practical performance portability in the parallel ocean program (pop):
Research articles. Concurr. Comput. : Pract. Exper., 17(10):1317–
1327, 2005.

[8] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel.
Introducing the open trace format (OTF). In International Conference
on Computational Science, pages 526–533, May 2006.

[9] P. Lu and K. Shen. Multi-layer event trace analysis for parallel i/o
performance tuning. In ICPP ’07: Proceedings of the 2007 Interna-
tional Conference on Parallel Processing, page 12, Washington, DC,
USA, 2007. IEEE Computer Society.

[10] J. Marathe and F. Mueller. Detecting memory performance
bottlenecks via binary rewriting. InWorkshop on Binary Translation,
Sept. 2002.

[11] MPI-2: Extensions to the message-passing interface. July 1997.
[12] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach.

VAMPIR: Visualization and analysis of MPI resources. Supercom-
puter, 12(1):69–80, 1996.

[13] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. Scalable
compression and replay of communication traces in massively parallel
environments. In International Parallel and Distributed Processing
Symposium, Apr. 2007.

[14] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. Scalatrace:
Scalable compression and replay of communication traces in high
performance computing. Journal of Parallel Distributed Computing,
69(8):969–710, Aug. 2009.

[15] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A tool to
visualise and analyze parallel code. In Proceedings of WoTUG-18:
Transputer and occam Developments, volume 44 of Transputer and
Occam Engineering, pages 17–31, Apr. 1995.

[16] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz. Preserving time
in large-scale communication traces. In International Conference on
Supercomputing, pages 46–55, June 2008.

[17] S. S. Shende and A. D. Malony. The tau parallel performance system.
Int. J. High Perform. Comput. Appl., 20(2):287–311, 2006.

[18] J. S. Vetter and B. R. de Supinski. Dynamic software testing of mpi
applications with umpire. In Supercomputing, page 51, 2000.

