Scalable Full-Text Search for Petascale File Systems

Andrew W. Leung Ethan L. Miller
Storage Systems Research Center Storage Systems Research Center
University of California, Santa Cruz University of California, Santa Cruz
Santa Cruz, California 95064 Santa Cruz, California 95064
Email: aleung@cs.ucsc.edu Email: elm@cs.ucsc.edu

Abstract—As file system capacities reach the petascale, it isfiles to be organized and retrieved using any of their feature
becoming increasingly difficult for users to organize, find,and or keywords, rather than just their pathname. As a resuleimu
manage their data. File system search has the potential to gatly less time is spent organizing and navigating files and the ris
improve how users manage and access files. Unfortunately, . L .
existing file system search is designed for smaller scale syss, ‘?f Iosm_g data is significantly reduced_. Thus, search prewil
making it difficult for existing solutions to scale to petasale file retrieval method that can scale with petascale file syste
files systems. In this paper, we motivate the importance of il Unfortunately, providing efficient file system search at the
system search in petascale file systems and present a new {full petabyte-scale presents a number of challenges. Firstcthie
text file system search design for petascale file systems. W&l ¢ (hoge systems (billions of keywords and billions of files)

existing solutions, our design exploits file system propeigs. Using K iding fast h f i v difficul
a novel index partitioning mechanism that utilizes file sysem MaKeS providing fast search performance extremely aitticu

namespace locality, we are able to improve search scalafjliand ~ Second, ensuring that search results are consistent vditye |
performance and we discuss how such a design can potentiallyand rapidly changing file system is often slow and taxing

improve search security and ranking. We describe how ourdegn on the file system. Third, achieving fast search and update
can be implemented within the Ceph petascale file system. performance without requiring lots of expensive hardware i
difficult. In existing desktop and enterprise file systemreea
tools, which only index up to millions of files [24], the
As more business, science, government, and other entitistionary can often be kept in-memory and posting lists are
move towards a digital infrastructure, the demand for largasually small enough to be sequential on-disk, making &earc
scale, high-performance storage has drastically incdeddes and update efficient. In petascale file systems, the diatjona
demand has resulted in an increasing number of file sys-too large to simply reside in-memory and must often be
tems that store petabytes of data, billions of files, andeserdistributed across many machines. Likewise, long postsig |
thousands of users. Unfortunately, the scale of these fdee difficult to keep sequential on-disk and can require many
systems makes efficiently organizing, finding, and managiuiisk seeks to retrieve. Current file system search solutians
files extremely difficult. Users are forced to manually origan had very limited impact in petascale file systems because the
and navigate huge hierarchies, with possibly billions @sfjl cannot efficiently scale performance and cost with the sfze o
which is very slow and inaccurate. A scientist, for examplé¢hese systems.
whose simulation produces thousands of files may have tdn this paper we propose the design of a novel index for
meticulously name and manually navigate thousands of filpstascale file system search. Unlike inverted indexes wtlyre
to find those with interesting data results. In petascale filsed for file system search that are designed for general-
systems, this manual organization and navigation oftemtes purpose text retrieval, we exploit the properties of pethesc
in lost time and productivity as users try and locate files, dit®e systems to improve scalability and performance without
well as, misplaced or permanently lost data. requiring the use of extra hardware and which can be em-
As file systems have grown in size, file system search hlasdded directly within the file system. Our approach uses
become increasingly popular because it addresses many dite index partitioning method, callekierarchical partition-
management problems. File system search has been an adtigd30], to decompose the index into many smaller, disjoint
research topic for two decades [17, 20, 38] and is becomipgrtitions based on the file system’s namespace. Through the
ubiquitous on desktop [4,18,33] and enterprise [15,19,26%e of anindirect indexthat manages these partitions, our
file systems. Full-text (or keyword) search is the foundaticapproach provides flexible, fine-grained index control tzat
of most modern file system search and itneerted inde{22] significantly enhances scalability and improve both searah
is the primary indexing structure. An inverted index cotssisupdate performance. In addition, we discuss how to leverage
of a dictionary of keywords in the file system. Each keywordgartitioning to enforce file security permissions with oy
in the dictionary points to gosting list that contains the limited overhead, provide personalized search resultinaisk
exact location within files where the keyword occurs, whichnd to distribute the index across a cluster.
are calledpostings File system search alleviates many file Our contributions include motivating the importance of
organization, location, and management problems by afigwiefficient search in petascale file systems, discussing &alini

I. INTRODUCTION

petascale file system search design, and describing howket/words. This approach requires significant time to nante an
can be integrated within a real-world petascale file systethen sort through files, while not guaranteeing files will be
Our current and future work includes the following. Firsie wfound. However, efficient file system search can greatly ease
are collecting and analyzing a data set of file keywords frothis process, as scientists can simply issue queries far file
several large-scale file systems. To date, no data set éxistscontaining the results they are interested in, also making i
file system search as most are targeted towards databaseseaster to share results with others.

the web and do not reflect file system properties. Second, @eArchival data.Often petascale file systems employ tiered
are in the process of completing our index and algorithnssorage architectures because storing petabytes of daiglon
designs. Third, we are exploring how such a system can éed disks is too expensive [32]. Files not recently used are
implemented within the Ceph petascale file system [45] bften archived on cheaper, lower-tier tape storage. Thisesa
order to evaluate its performance. retrieving archived data very difficult as data is often aseel
much later, file organizations are often long forgotten, and
third party is retrieving the data [6]. As a result, findinglsive

In this section we motivate search for petascale file systendata requires manual navigating the file system, which often
discuss the challenges with petascale file system seardh, amounts to a full scan of the file system and can take days or
describe related work. weeks. However, file system search allows significantlyezasi

o and faster exploration of the archive by trading slow, brute
A. Extended Motivation force navigation for simple and fast queries.

Today’s file systems can store petabytes of data, spre®)dLegal compliance datawith increasing legal data regu-
amongst billions of files, are composed of thousands of @svidations [41,42], petascale file systems often store data tha
and can serve data to thousands of users. These file systemost be kept for a given period of time, unmodified, and
may store exabytes of data in the coming future as tihe able to produce it in response to litigation. Finding and
digital universe is expected to expand to several zetaligstesproducing files when legally required to do so is extremely
2011 [16]. difficult in petascale file systems since manually navigatin

One of the key challenges for file systems at the petascaléigge hierarchies is very slow and inaccurate. Howeverchear
effectively organizing, finding, and managing the growieg s enables much simpler response to litigation as files pentin
of files. Currently, file systems users are forced to manually the case can simply be recalled through a query with much
organize and navigate huge directory hierarchies that chaigher accuracy.
contain billions of files. Managing these hierarchies reggii These use cases represent some specific scenarios where
significant time and diligence by users to organize and narsearch is extremely useful, though may not represent thé mos
large numbers of files in a meaningful manner. Then usatsmmon user operations. However, several other works have
must spend more time later navigating these hierarchids wihown that in most cases search is a far more intuitive and
only the hopeof finding their data. This at best this wastescalable method of file retrieval than traditional hiergrch
time and at worst can effectively lead to data loss. In essennavigation [14, 39, 40].
file systems lack an file retrieval method that can scale with
the file system’s siz&ortunately, two decades of file systen- Petascale Search Challenges
and information retrieval research have shown that fileesyst While search is important in petascale file systems, the
search provides a scalable retrieval method that can rtetigacale of these file systems present a number of challenges
many of these problems by allowing files to be retrieved usiribat designing an efficient solution difficult. Here werecdiss
their features or keywords rather than just their pathndfiigs some of these challenges.

20, 31, 35-38]. Similarly, full-text search has revolutmed 1) Cost. Today’s large-scale search engines, such as Google
the way web pages are organized and accessed on the Intearel, Yahoo!, use large, dedicated clusters of machines to
demonstrating its ability to scale to very large systems. achieve high-performance [5]. Index updates are appliéd of

To further motivate the importance of search in petascdlae on a separate cluster and the index is re-built weekly.
file systems, we describe several use case examples taken frtowever, dedicated hardware can cost millions of dollars,
discussions with real large-scale file system users. which is often as much as an entire file system budget, and
1) Managing scientific dataA single scientific simulation can weekly updates make file system search results too stale.
often generate thousands of files containing experimert daEven enterprise file system search appliances can cost tens
However, finding files with interesting results amongst thstv of thousands of dollars and index only millions of files [24].
collection can be extremely difficult. As a result, scietstis Petascale file system search should require only minimal
often take great care to name files with experiment resultesources, reducing costs and allowing it to be integrated
such as, naming a fileun_10_succ_1h30m 22uj . data directly with the file system.
for an experiment that was the “tQrun, finished successfully, 2) PerformanceMost large-scale search engines and database
took 1 hour and 30 minutes and calculated 22 microjoulsgstems make significant trade-offs between search andeaipda
of energy. Later locating results requires sifting throtighu- performance [1, 28]. File system search must, howevekestri
sands of files to locate those with names containing usefubalance between the two, as it must quickly search through

II. BACKGROUND

billions of files, as well as, frequently update the index t
reflect constant changes in the file system [29,44]. As tl

file system scales to petabytes, the dictionary becomes
large fit in-memory and posting lists become too long to k /
. hom proj
kept sequential on-disk, resulting in numerous disk seeks 1
jlm dlstmeta rellablllty mclude

a single search. Posting list update algorithms either iy a
1
I
I

maintain on-disk sequentially at a significant cost to upda
performance or vice versa [28]. As a result, it is difficul
to efficiently scale search and update performance withc
requiring significant hardware additions.

3) Ranking.Searching the web has been greatly improve + y ¥ Keyword 1's
through successful search result ranking algorithms [BesE i]] | | Posting List
algorithms often only need to return the few tép+esults Segments

to satisfy most queries. However, such algorithms do n Hard
. - - - ar
yet exist for file systems, particularly, petascale file syst. Disk
Current desktop and enterprise file systems often rely v
simplistic ranking algorithms that require users to sifotigh,
possibly, thousands of search results. In petascale fitersgs

a single search can return millions of files, making accuratiiﬁ%ns that represent disjoint sub-trees. Each partitiamintains

ranking critical. Previous work has looked at how {0 USgygting jist segments for keywords that occur within its-abs.
personalization [3,26] and semantic links [21,37,38] ie thsince each partition is relatively small, these segments lma kept
file system to improve accuracy. sequential on-disk.

4) Security. Petascale file systems often store highly secure

data, such as nuclear test data. It is critical that file syste

search not leak privileged data. Unfortunately, curreré ficheaper, for many systems it is preferable to sacrifice dgpac
system search tools either do not enforce file permissiofsd construct an index for faster search performance. The
or significantly degrade performance [12] to do so. In mogYumpus desktop search system [10] introduces a number of
cases, a separate index is built for each user, which gafprovements to conventional inverted index design, which
require prohibitively high disk space, or permission creckmproves full-text search on desktop file systems. Howetger,
(i.e.stat () calls) are required for every search result, whicburrent design targets desktop file systems and lacks a mumbe

1: Segment Partitioning. The namespace is broken into par-

is very slow. of features critical to petascale file system search.
5) Distributed design.Petascale file systems are naturally
distributed and can be composed of thousands of devices. l1l. OUR APPROACH

This requires the index, which can grow to be 20% of the While petascale file systems present a number of challenges
file system’s size [8], to be distributed as well. Distriliifde that make search difficult, they also have properties that ca
system search must be able to handle the frequent additibn &e leveraged. In particular, our inverted index desigrize
removal of devices, effectively utilize file system resasc hierarchical partitioning an index partition mechanism that
while balancing load with the file system’s workload. exploits file system namespace locality [30]. Namespace lo-
cality implies that location within the file system’s namasg
C. Related Work influences the properties of files within it. That is, diffete

As file systems have grown in scale, more research h&b-trees in the namespace have different access patterns
looked at improving file system search performance. Howeves.g.frequently vs rarely accessed, metadata vs 1/0 workloads
only a few have looked at re-designing index structures fer fiand read vs write workloads) [29,43], grow at different
systems. The Inversion file system [36] used a PostgreS@ites [2, 13], and are often accessed by only a small fracfion
database to index files, rather than traditional file systesdé users [29]. Namespace locality follows logically from traetf
structures. Inversion allows database-style queries files; that the file system’s namespace is already a neatly organize
however, general-purpose databases have only limitedistal and classified hierarchy of files and directories, wheresdifit
ity for large-scale file system search [30]. The GLIMPSE [31dub-trees usually have different uses.
file search system uses an inverted index to route querles to
parts of the namespace where results are locatechgnép A Index Design
is then used to find files that match the search. While thisOur index design consists of two-levels. At the first level is
approach greatly reduces index size, only requiring 2% to 4&besingle inverted index, called thedirect index that points
of the total text size, it is much slower since many files musb the locations of posting lissegmentsather than the entire
be read and processed. Likewise, Diamond [23] does not ymesting list itself. The indirect index is similar to the énted
an index at all, instead, using a method, called Early Dicaindex used in GLIMPSE [31]. At the second level is a large
to more quickly scan files. As disk capacity has become muchllection of posting list segments. A posting list segmisnt

roT ey Indirect Tndesx Ty ; on-disk, retrieving a single segment is fast. A disk seelt wil

Keyword 1 often be req_uir_ed between segments. -
While retrieving a keyword’s full posting listi.€.all seg-

Keyword 2 ments or all occurrences of the keyword in the entire file sys-

tem) requires a disk seek between each segment, our use of hi-

erarchical partitioning allows us to exploit namespacelibc

to retrieve fewer segments. Many keywords and phrases have

namespace locality and only occur in a fraction of the parti-

! tions (which we plan to quantify in future our future workpr~

/ example, the Boolean quesyorage AresearchAsanta/Ncruz

requires (depending on the ranking algorithm) that a pauntit

! contain files with all four terms before it should be searclied

Keyword 3
Keyword 4

000 -0}

Postinﬁ List Segments for Partition 1 !

- -
.-

|:'| |j I:I |j |:| it does not contain all four terms, often it does not need to be
et L searched at all. Using the indirect index, we can easilytitlen
Posting List Segments for Partition 2 the partitions that contain the fulhtersectionof the query

terms. By taking the intersection of the partitions retarne

Fig. 2: Indirect I ndex Design. The indirect index stores the dictionary We can identify just the segments that contain files matching
for the entire file system and each keyword’s posting liststain ~the query. Reading only these small segments can significant
locations of partition segments. Each partition segmentképt reduce the amount of data read compared to fetching postings
sequential on-disk. from across the entire file systems. Likewise, by reducing
the search space to a few small partitions, with disk seeks
occurring along partition boundaries, the total numberisk d

a region of a posting list that is stored sequentially ordisseeks can be significantly reduced.

Posting lists are partitioned into segments using hieieath ~ The search space can also be reduced when a search query
partitioning. Thus, a segment represents the postingskeya is localized to part of the namespace. For example, a user
word that occurs within a specific sub-tree in the namespa#eay want to search only their home directory or the sub-tree
An illustration of how the a posting list is partitioning it containing files for a certain project. In existing systeiths,
segments is shown in Figure 1. The namespace is partitior@stlire file system is searched and then results are pruned to
so that each sub-tree’s partition is relatively small, anghder €nsure they fall within the sub-tree. However, through tke u

of 100,000 files. By partitioning the posting lists into segnits 0f & look up table that maps pathnames to their partitions, ou
we ensure fast performance for searching or updating any diproach reduces the scope of the search space to only the
partition, as posting lists are small enough to efficientigd, scope specified in the query. For example, a query scoped to a
write, and cache in-memory. In essence, partitioning makeser's home directory eliminates all segments not with&irth

the index namespace locality-aware and allow the index to Beme directory from the search space. Thus, users can tontro
controlled at the granularity of sub-trees. the scope and performance of their queries, which is cfitica

The purpose of the indirect index is to identify whicHn Petascale file systems. Often as the file system grows, the

sub-tree partitions contain any postings for a given kegworfiles a user cares about searching and accessing grows at a
Doing so allows search, update, security, and ranking fuch slower rate. Our approach allows search to scale with
operate at the granularity of sub-trees. The indirect ind&hat the user wants to search, rather than the total sizeeof th
maintains the dictionary for the entire file system. The oeasfile system.
to maintain a single dictionary is that keeping a dictionaey- ~ Once in-memory, segments are managed by an LRU cache.
partition would simply require too much space overheadesindhough there have been no studies of file system query
many keywords will be replicated in many dictionaries. Eadp@tterns, web searches [7,27] and file access patterns¢#9] b
keyword’s dictionary entry points to a posting list that tains ~ €xhibit Zipf-like distributions. This implies skewed pdputity
the on-disk address of segments that contain actual psstir@jstributions for partitions and that an LRU algorithm whié
We illustrate the design of the indirect index in Figure 2@ able to keep popular partitions in-memory, greatly impngyi
the indirect index only maintains a dictionary and postingerformance for common-case searches. Additionally, this
lists Containing Segment pointers’ it can be kept in_meniforyenables better cache utilization since Only index dataadla
properly distributed across the nodes in the file systemghvhito Popular partitions is kept in-memory, rather than datefr
we will discuss later in this section. all over the file system. Efficient cache utilization is imtzmt
for direct integration with the file system since it will ofte
B. Query Execution be shared by the file system.

All search queries go through the indirect index. ThE: Index Updates
indirect index identifies which segments contain the pgstin One of the key challenges with file system search is
data relevant to the search. Since each segment is sedquebtiftancing search and update performance. Inverted indexes

traditionally use either an in-place or merge-based upsted- Ranking file system search results is difficult because most
egy [28]. An in-place update strategy is an update-optithizéiles are unstructured documents with little semantic imfar
approach. When postings lists are written to disk, a seéalention. However, sub-trees in the namespace often have distin
region on-disk is allocated that is larger than the requireshique purposes, such as a users home directory or a source
amount. When new postings are added to the list they arede tree. Using hierarchical partitioning, we can leverag
written to the empty region. However, when the region fillthis information to improve how search results are ranked
and new posting needs to be written, a new sequential regiontwo ways. First, files in the same partition may have a
is allocated elsewhere on-disk and the new postings arewritsemantic relationshipi.€. files for the same project) that can
to it. Thus, in-place updates are fast to write since they cae used when calculating rankings. Second, different ranki
usually be written sequentially and do not require much presquirements may be set for different partitions. Rathanth
processing. However, as posting lists grow they become versge a one-size-fits-all ranking function for all billion §len the
fragmented which degrades search performance. Altegigtiv file system, we can potentially use different ranking fumas
a merge-based update strategy is a search-optimized approtor different parts of the namespace. For example, files from
When a posting list is modified it is read from disk, modifie@d source code tree can be ranked differently than files in a
in-memory, and written out sequentially to a new locatiorscientist’s test data, potentially improving search ratee for
This strategy ensures that posting lists are sequentidisiq- users.
though requires the entire posting to be read and written inBoth file system access patterns and web searches have Zipf-
order to update it, which can be extremely slow for largike distributions. Assuming these distributions holdetrior
posting lists. file system search, a large set of index partitions will belcol
Our approach achieves a better balance in two ways. Figte.not frequently searched). Our approach can allow us to
since posting list segments only contain postings fromipartdentify these cold partitions and either heavily compitessn
tions, they are small enough to make merge-based updaiesnigrate them to lower-tier storage (low-end disk or tape)
efficient. When modifying a posting list, we are able t@o improve cost and space utilization. A similar concept has
quickly read the entire list, modify it in memory, and quigkl been applied to legal compliance data in file systems and has
write it out sequentially to disk. Doing so keeps segmeshown the potential for significant space savings [34].
updates relatively fast and ensures that segments arergigue) -
on-disk. An in-place approach is also feasible since sm&li ntegration within Ceph
segments often will not need allocate more than one diskSince addressing file system search performance with ad-
region. However, the space overhead from over-allocatisig d ditional hardware can be prohibitively expensive at theapet
regions can become quite high. Second, our approach cate, it is important search can be efficient integrated iwith
exploit locality in file access patterns to reduce overaskdi the file system. File system search should provide scalable
I/Os. Often only a subset of file system sub-trees are fretyuerperformance while not interfering with normal file operatio
modified [2,29]. As a result, we often only need to reaWe discuss how our approach can be integrated with the Ceph
segments from a small number of partitions. By reading fewpetascale file system [45].
segments, far less data needs to read for an update compardéteph is an object-based parallel file system. A cluster of
to retrieve an entire posting list, cache space is bettbzedi metadata servers (MDSs) handles metadata operations while
and we are able to better coalesce updates in-memory befarduster of object storage devices (OSDs) handles data oper
writing them back to disk. ations. The MDS cluster manages the namespace and stores
all file metadata persistently on the OSD cluster. Since the
OSD cluster is used for metadata storage, MDS nodes can
In addition to improving scalability, hierarchical paiditing generally afford a significant amount of main memory (tens
can potentially improve how file permissions are enforcédl, aof gigabytes).
result ranking, and improve space utilization. We intend for the indirect index to be distributed across the
Secure file search is difficult because either an index is keyyDS cluster and across enough nodes so that it can be kept
for each user, which requires a huge amount of disk space,jmmemory. Since a significant amount of query pre-procgssi
permissions for all search results need to be checked, whiekes place in the indirect index, keeping it in-memory will
can be very slow [11]. However, most users only have accesgnificantly improve performance. Posting list segmenits w
privileges to a limited number of sub-trees in the namebe stored on the OSD cluster and since they are small they
pace (we plan to quantify this in future work). Hierarchicatan map directly to physical objects. The indirect index
partitioning, through the use of additional metadata storg@artitioned across the MDS cluster usinglabal inverted file
in the indirect index, can eliminate sub-trees a user can@f) partitioning approach. In this approach keywords are
access from the search space. Doing so prevents users fumad to partition the index such that each MDS stores only a
searching files they cannot access without requiring any adsubset of the keywords in the file system. For example, with
tional indexes and reduces the total number of search sestfto MDS nodesA and B, A may index and store all keywords
returned, limiting the number of files whose permissionstmuis the rangda — ¢] and B may index and store all remaining
be checked. keywords. Using ard F; partitioning approach limits network

D. Additional Functionality

bandwidth requirements as messages are sent only to the MB8uding Data Domain, DigiSense, LS| Logic, NetApp, Sea-
nodes responsible for query keywords. gate, and Symantec. We thank Shankar Pasupathy, Tim Bisson,

In our design, the example Boolean quetyrageAsantaA Minglong Shao, and the other members of NetApp’s Advanced
cruz will be evaluated as follows. A user will issues the queryechnology Group, as well as, the members of the SSRC,
through a single MDS node (possibly of their choosing) whiclwvhose advice helped guide this research. Finally, we thank
will shepherd the query execution. This shepherd node wilie anonymous reviewers for their insightful feedback.
qguery the MDS nodes responsible for the keywords “storage”,
“santa”, and “cruz” based on thé&Fy partitioning. These REFERENCES
nodes with return their indirect index posting lists, whichpy) p. . Abadi, S. R. Madden, and N. Hachem, “Column-StoresRow-
are stored in-memory, and the shepherd with compute the Stores: How different are they really?” Rroceedings of the 2008 ACM
intersection of these to determine which partitions congi SIGMOD International Conference on Management of D&&ncouver,

BC, Canada, June 2008.
th_ree terms and are thus ielevant_the to query. The shephgsl N, ‘Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch *
will cache these posting lists (to improve subsequent query five-year study of file-system metadata,” Rroceedings of the 5th
performance) and then query the three MDS nodes for the 3050'57'\‘“ Cgfjirgnce on File and Storage Technologies (FAB)T Fib.
" , pp- .

segments that correspond to the relevant partitions. Thegg s ames, C. Maltzahn, and E. L. Miller, “QUASAR: Interémt with file
segments will be read from the OSD cluster, cached at the systems using a query and naming language,” University ¢ifa@aia,
three MDS nodes, and the returned to the shepherd. The Santa Cruz, Tech. Rep. UCSC-SSRC-08-03, September 2008.

.] Apple, “Spotlight Server: Stop searching, start findingttp://www.
shepherd will aggregate the results from the segments aukd ra apple.com/server/macosx/features/spotlight/, 2008.

them before returning them to the user. [5] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. lRagn,
“Searching the web,ACM Transactions on Internet Technologyl. 1,
IV. CONCLUSIONS ANDFUTURE WORK no. 1, pp. 2-43, 2001.

.[6] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulosyi&niatis,
As file systems continue to grow, scalable file retrieval is ~ 1. Giuli, and P. Bungale, “A fresh look at the reliability oérig-term

emerging as one of the key challenges. As a result, file system digital storage,” in Proceedings of EuroSys 2006Apr. 2006, pp.

P f P f 221-234.
search has becomlng mcreasmgly popular because it Weaijz] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossmad,@nFrieder,

ImpI’OVGS how users 0rgan|ze and retrieve files. Unfortlmate “Hour|y ana|ysis of a very |arge topica| Categorized Webrydegy" in
existing file system search solutions have dif'ficulty chilin Proceedings of the 27th annual international ACM SIGIR easrice

; : on Research and development in informaion retrieval (SIGR),
cost and performance to petascale file systems. To addigss th Sheffield. UK. June 2004,

problem, we presented an initial petascale file system Bearg 1. c. Bell, A. Moffat, C. G. Nevill-Manning, 1. H. Wittenand J. Zo-
design. Our design exploits file system properties to improv bel, “Data compression in full-text retrieval systemdgurnal of the

search scalability and performance while not requiring sig fg”;%r'ca” Soiety for Information Sciencesl. 44, no. 9, pp. 508-531,

nificant hardware additions. While we presented some Initigg) s. Brin and L. Page, “The anatomy of a large-scale hypere web
ideas, there is much future work. search engine Computer Networks and ISDN Systent. 30, no. 1-7,
) pp. 107-117, 1998.
1) To the best of our knOWIedge no |arge'scale file syste[%] S. Bittcher, “Multi-user file system search,” Ph.D.sgbrtation,
keyword data sets exist. Those available, such as those university of Waterloo, 2007.
from TREC, are designed for database and web searBd] S. Buticher and C. L. A. Clarke, “A security model forlliftext file

Wi | ing t llect k d dat ts f | system search in multi-user environments,” Rnoceedings of the 4th
€ areé planning to collect keyword data Sets 1rom reéal- (jsenix conference on File and Storage Technologies (FASTT San

world large-scale file systems using a secure approach Francisco, CA, Dec. 2005, pp. 169-182.
that anonymizes keywords while preserving namespa[éé] S. Buttc_her and C. L. Clgrke, “A security model for fodixt file system
localit search in multl-u_ser environments,” I?roce(_edlngs of the 4th USENIX
Y. Conference on File and Storage Technologies (FAST, 'B&h Francisco,
2) Our design assumes that file system keywords exhibit cA, December 2005.
namespace locality, which has been shown to be tH8] J. R. Douceur and W. J. Bolosky, “A large-scale study & fiystem

. . . contents,” in Proceedings of the 1999 SIGMETRICS Conference on
case for file metadata [2,30]. To validate and quantify y..cirement and Modeling of Computer Systevay 1999,

keyword namespace locality we plan on analyzing the4] p. Ellard, “The file system interface in an anachronistiarvard
keyword data sets we collect. University, Tech. Rep. TR-15-03, November 2003.

S . 5] Fast, “FAST — enterprise search,” http://www.fastsbacom/, 2008.
3) We have presented a number of initial index desig 6] J. F. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reln¥& Schlicht-

However, our design is far from complete. We will use ~ ing, and A. Toncheva, “The Digital and Exploding Digital Weise:
the results of our keyword analysis to guide and finalize An updated forecast of worldwide information growth thrbug011,”
our design International Data Corporation (IDC), Tech. Rep., Marclo@0
: . [17] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. OTep Jr.,
4) To better understand how search and file systems can bé “Semantic file systems,” iProceedings of the 13th ACM Symposium
integrated we are planning to implement and evaluate on Operating Systems Principles (SOSP :91ACM, Oct. 1991, pp.

iy i ; 16-25.
our design in the Ceph petascale file system. [18] Google, Inc., “Google Desktop: Information when younwd, right on

A your desktop,” http://www.desktop.google.com/, 2007.
CKNOWLEDGEMENTS [19] ——, “Google enterprise,” http://www.google.com/ergrise/, 2008.
This work was Supported in part by the Department of EflR0] B. Gopal and U. Manber, “Integrating content-basedeasanechanisms

. . with hierarchical file systems,” ilProceedings of the 3rd Symposium
ergy under award DE-FC02-06ER25768 and by the industrial Operating Systems Design and Implementation (QSEEp. 1999,

sponsors of the Storage Systems Research Center (SSRC),pp. 265-278.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

K. Gyllstrom and C. Soules, “Seeing is Retrieving: Biirlg information
context from what the user sees,” RProceedings of the 2008 Inter-
national Conference on Intelligent User Interfacédaspalomas, Gran
Canaria, Spain, January 2008.

D. Harman, R. Baeza-Yates, E. Fox, and W. Leéormation retrieval:
data structures and algorithmsUpper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1992, ch. Inverted files, pp. 28-43.

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Sagyapanan,
G. R. Ganger, E. Riedel, and A. Ailamaki, “Diamond: A storage
architecture for early discard in interactive search,”Piroceedings of
the Third USENIX Conference on File and Storage Technaofff&ST
'04). San Francisco, CA: USENIX, Apr. 2004, pp. 73-86.

G. G. Inc., “Compare search appliance tools,” httppimgoebelgroup.
com/sam.htm, 2008.

Index Engines, “Power over information,” http://wwndexengines.com/
online_data.htm, 2008.

J. Koren, Y. Zhang, S. Ames, A. Leung, C. Maltzahn, and. EMiller,
“Searching and navigating petabyte scale file systems basddcets,”
in Proceedings of the 2007 ACM Petascale Data Storage Workshop
(PDSW 07) Reno, NV, November 2007.

R. Lempel and S. Moran, “Predictive caching and préfielg of query

results in search engines,” Rroceedings of the 13th International World [40]

Wide Web Conferenc®udapest, Hungary, 2003.

N. Lester, A. Moffat, and J. Zobel, “Efficient online iaed construction
for text databases, ACM Transactions on Database Systemsl. 33,
no. 3, 2008.

A. W. Leung, S. Pasupathy,
“Measurement and analysis of
workloads,”
Conference Jun. 2008.

A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. Lle¥i“Spy-
glass: Fast, scalable metadata search for large-scalegstsystems,”

G. Goodson,
large-scale network file gsyste

in Proceedings of the 7th USENIX Conference on File and Storadé4]

Technologies (FAST '09February 2009.

U. Manber and S. Wu, “GLIMPSE: A tool to search throughtiren
file systems,” inProceedings of the Winter 1994 USENIX Technical
Conference San Francisco, CA, 1994.

J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B.sbfiig,
“IBM Storage Tank—a heterogeneous scalable SAN file systéBiM
Systems Journalol. 42, no. 2, pp. 250-267, 2003.

Microsoft, Inc., “Windows search 4.0,” http://www.sletop.google.com/,
2007.

[35]

[36]

[37]

(38]

[39]

and E. L. Miller[41]

in Proceedings of the 2008 USENIX Annual Technical42]
[43]

[45]

[34] S. Mitra, M. Winslett, and W. W. Hsu, “Query-based péotiing

of documents and indexes for information lifecycle manageth

in Proceedings of the 2008 ACM SIGMOD International Confegcon
Management of DataJun. 2008.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and Melg&er,
“Provenance-aware storage systems,” Rmoceedings of the 2006
USENIX Annual Technical Conferend@oston, MA, 2006.

M. A. Olson, “The design and implementation of the Irsien
file system,” in Proceedings of the Winter 1993 USENIX Technical
Conference San Diego, California, USA, Jan. 1993, pp. 205-217.

S. Shah, C. A. N. Soules, G. R. Ganger, and B. D. Noble,irftys
provenance to aid in personal file search,”"Rmceedings of the 2007
USENIX Annual Technical Conferenc&un. 2007, pp. 171-184.

C. A. N. Soules and G. R. Ganger, “Connections: usingtednto
enhance file search,” iRroceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP '08)lew York, NY, USA: ACM
Press, 2005, pp. 119-132.

C. A. Soules and G. R. Ganger, “Why can't i find my files? maethods
for automatic attribute assignment,” Rroceedings of the 9th Workshop
on Hot Topics in Operating Systems (HotOS;I%ydney, Australia,
1999.

J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karg&he
perfect search engine is not enough: a study of orientedyatgavior

in directed search,” ifProceedings of the 2004 Conference on Human
Factors in Computing Systems (CHI '04) ACM Press, 2004, pp.
415-422.

United States Congress, “The health insurance pditialind account-
ability act (hipaa),” http://www.hhs.gov/ocr/hipaa/, 98

——, “The sarbanes-oxley act (sox),” http://www.soxleom/, 2002.

W. Vogels, “File system usage in Windows NT 4.0,” Rroceedings
of the 17th ACM Symposium on Operating Systems PrinciploSPs
'99), Dec. 1999, pp. 93-109.

F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D..E
Long, and T. T. McLarty, “File system workload analysis farde
scale scientific computing applications,” iRroceedings of the 21st
IEEE / 12th NASA Goddard Conference on Mass Storage Systemns a
TechnologiesCollege Park, MD, Apr. 2004, pp. 139-152.

S. A. Well, S. A. Brandt, E. L. Miller, D. D. E. Long, and ®altzahn,
“Ceph: A scalable, high-performance distributed file systein
Proceedings of the 7th Symposium on Operating Systems rDasit)
Implementation (OSDI) Seattle, WA: USENIX, Nov. 2006.

