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ABSTRACT
Petascale computing systems pose serious scalability challenges 
for any data storage system. Lustre is a scalable, secure, robust, 
highly-available cluster file system that has been successfully 
deployed on some of the largest supercomputing systems in the 
world, including the BlueGene/L supercomputer at the Lawrence 
Livermore National Laboratory (LLNL), the Red Storm 
supercluster at Sandia National Laboratories and the Jaguar 
supercomputer at the Oak Ridge National Laboratory. This paper 
provides file system developers with insight into how network file 
system scalability is addressed in the Lustre file system through 
policies and algorithms that support distributed lock management 
and options for facilitating recovery after a compute node failure 
in a large scale cluster. These design approaches can be applied to 
the scaling of other file systems to support large clusters. 
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1. LOCKING STRATEGIES AT SCALE 
Protecting the integrity of cached data through the use of 
distributed locks goes back at least to the VAX cluster file system 
and possibly even further. When distributed locks are used in a 
very large cluster with extremely large files, several interesting 
new issues appear. The locking model has many subtle variations, 
but, for the purpose of this discussion, it may be assumed that 
resources are protected with single-writer, multiple-reader locks. 

1.1 Lock Matching 
When locks are acquired by clients in a Lustre file system, they 
are checked against already-granted locks for conflicts. If 
conflicting locks exist, they have to be revoked through a callback 
to the lock holder. If no conflicting locks exist, the lock can be 
granted immediately. It is very common for a very large number 
of compatible read locks to be granted simultaneously, for 
example, when a client wants to perform a lookup in a directory 
or when many clients read from one file or write to disjoint 
extents in one file. 

To optimize the checks for lock compatibility, the linear lists that 
traditional lock managers use were replaced in Lustre by skip 
lists, which make fast compatibility checks.  First introduced by 
William Pugh, skip lists incorporate multiple pointers that aid in 
searching, as shown in Figure 1. When file extents are used, the 
lists of extents are replaced by an interval tree, making lock 
matching dramatically faster. 
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Figure 1. Skip lists showing linked lists  
with additional pointers 
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Figure 2 (top) shows a set of 10 intervals sorted bottom to top by 
left endpoint. Figure 2 (bottom) shows an equivalent interval tree. 
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Figure 2. An interval tree representing  
a sorted list of intervals. 

1.2 Lock Contention 
Lock contention occurs whenever one process attempts to acquire 
a lock held by another process 

Intent Locks. For metadata processes, such as the creation of files, 
it is common for data to be heavily shared. For example, when all 
clients create files in one directory, all the clients need 
information about that directory. While traditional file systems 
granted each client, in turn, a lock to modify the directory, Lustre 
has introduced “intent locks”. 

Intent locks contain a traditional request together with 
information about the operation that is to be performed. At the 
discretion of the server, the operation may be fully executed 
without granting a lock. This allows Lustre to create files in a 
shared directory with just a single remote procedure call (RPC) 
per client, a feature that has proven robustly scalable to 128,000 
clients on the BlueGene/L system at LLNL.  Figure 3 illustrates 
this behavior.

Adaptive I/O Locks. Although some applications involve heavy 
I/O sharing, these scenarios are rare. Lustre adapts when heavy 
I/O sharing occurs, but normally assumes that clients should be 
granted locks and that these will not be frequently revoked. When 
Lustre detects, in a short time window, that more than a certain 
number of clients have obtained conflicting locks on a resource, it 
denies lock requests from the clients and forces them to write-
through. This feature has proven invaluable for a number of 
applications encountered on very large systems. 

For the Catamount version of Lustre, called liblustre, which runs 
on the ORNL Jaguar system, adaptive I/O locks are mandatory for 
another reason. The Catamount nodes cannot be interrupted, and, 
as a result, lock revocations are not processed. Read locks can be 
revalidated upon re-use, but write locks are associated with dirty 
data on the client, so Catamount does not take write locks. 
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Figure 3. Single RPC metadata operations with intent locks. 

2. RECOVERY AT SCALE 
Like most network file systems, Lustre uses an RPC model with 
timeouts. On large clusters, the number of concurrent timeouts 
can be significant, because uneven handling of requests can lead 
to significant delays in request processing. Timeouts may result 
when clients make requests to servers or when servers make 
requests to clients. When clients make requests to servers, a long 
timeout is acceptable. However, when servers make callback 
requests for locks to clients, the servers expect a response in a 
much shorter time to retain responsiveness of the cluster. 

Serialized Timeouts. Relatively early in the development of 
Lustre, scenarios in which timeouts happen repeatedly were 
observed to be commonly-occurring. Such a scenario may result 
when compute nodes in a group each create files in a directory 
and then execute I/Os to the files, and then, subsequently, the 
compute nodes are unreachable due to a circumstance such as a 
network failure. If another node in the cluster (let us call it the 
“listing” node) performs a directory listing with the "ls -l" 
command, problems can occur. The listing node tries to get 
attributes for each of the files sequentially as it makes its way 
through the directory entries it is listing. For each request for file 
attributes, the server does a lock callback to the client, and, since 
the client is unreachable, the server callback times out.  Even 
though callback timeouts take just a few seconds, with a few 
thousand clients, this leads to an unacceptable situation. 

To address this problem, a ping message was introduced in 
Lustre. A ping request is a periodic message from a client 
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showing it is alive and a reply demonstrating that the receiver is 
alive. If the ping message is not received by the server, the server 
cancels the client’s locks and closes its file handles, a process 
known as eviction. The affected client only learns that this has 
occurred when it next communicates with the server. It must then 
discard its cached data. Thus, a ping message is similar in 
function to a leased lock (a lock with a timeout), except that a 
single ping message renews all Lustre locks, while a separate 
lease renewal message would have to be sent for each leased lock. 

Such ping messages are not only important to avoid serialized 
timeouts. They are also vital when three-way communication is 
involved. For example, a client may be communicating with two 
servers and server 1 grants a capability, such as a lock, to the 
client to enable the client to communicate with server 2. If, due to 
a network failure, server 1 is not able to communicate with the 
client holding the capability, it is important that such a capability 
loses its validity so that server 1 can grant a conflicting capability 
to another client. Clients and servers can agree that when a ping 
message is not received, or no reply is received in response to a 
ping message, the capability has lost its validity. After the 
expiration of the ping message window, it is, therefore, safe for 
servers to hand out a conflicting capability. 

A ping message also allows a client to detect that a server has 
failed when no response to the ping message is received from the 
server.  However, ping messages in large clusters can cause 
considerable traffic. Lustre has been adapted to use ping services 
that gather status from all servers so that a single ping message 
from a client can convey all required information.  Using this in 
conjunction with a tree model for communication (for example, 
by using all server nodes to handle pings) can lead to very 
scalable pinging. 

Interactions Among Multiple Locks. The Lustre striping model 
stores file stripes on object server targets (OSTs) and performs 
single-writer, multiple-reader locking on file extents by locking 
extents in each object covered by the file extent. When I/O covers 
a region that spans multiple OSSs, locks are taken on each of the 
affected objects. The Lustre lock model is one that acquires a lock 
and then references it on the client while the client uses it. After 
use, the reference is dropped but the lock can remain cached.  
Referenced locks cannot be revoked until the reference is 
dropped.

The initial implementation for file data locking took locks on all 
objects associated with a given logical extent in a file and 
referenced these locks as they were acquired. In normal scenarios, 
the locks were acquired quickly in a specific order and each lock 
was referenced immediately after it was acquired. 

A problem arises with this implementation in situations in which 
both of the following occur: 

� The client receives a callback for a lock that has just 
been acquired. 

� The client experiences a timeout while acquiring a 
further lock associated with the file extent. 

The problem is that the first lock is not released in time, because 
the timeout for the second operation is longer. As a result, the 
client that is experiencing problems with the server that has given 

out lock (2) is now evicted by the server associated with lock (1). 
This leads to cascading evictions, which are undesirable. 

Lustre was changed to avoid this. The locks on extents in objects 
are referenced while I/O to the object is taking place, but do not 
remain referenced when I/O takes place to an extent in another 
object. The locking of objects is effectively decoupled. This has 
greatly reduced the number of timeouts experienced on larger 
clusters, where problems with lock enqueues are relatively 
common.

A further change to Lustre introduced more parallelism to the I/O 
process to stripe objects. Figure 4 shows two interaction 
diagrams with this enhanced object locking mechanism shown at 
the bottom. 

Figure 4. Object locking implementation in Lustre. 

On a single client, this approach does not affect POSIX semantics 
because the Linux kernel enforces POSIX semantics with 
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different, client-only locks in the Virtual File System (VFS). 
However, in a cluster, one must be careful with operations that 
have strict semantics, such as truncates and appending writes. For 
such operations, the Lustre locking behavior on the left is used. 

This methodology also illustrates another scalability principle that 
was introduced for metadata, namely parallel operations.  
Whenever possible, the clients engage all OSS nodes in parallel, 
instead of serializing interactions with the OSS, as illustrated in 
Figure 5. 

Figure 5. Parallel operations between clients and servers. 

Version Recovery. Lustre recovery provides transparent 
completion of system calls in progress when servers fail over or 
reboot. This recovery model is ideal from an application 
perspective, but requires all clients to join the cluster immediately 
after the servers become available again. When a cluster is very 
large, or contains Catamount clients that may not have noticed a 
server failure and subsequent restart, some clients may not rejoin 
the cluster immediately after the recovery event. Consequently, 
the recovery aborts, leading to evictions. 
Version recovery is being introduced into Lustre to more 
gracefully handle the situation where a client reconnects but 
misses the initial recover window. If the client reconnects later 
and finds that no version changes have taken place since an object 
was last accessed, the client retries the operation that was in 
progress and did not complete. After this retry, the client rejoins 
the cluster. Cached data is only lost if an object was changed 
while the client was not connected to the cluster, a decision again 
based on the version. 
This model appears to scale well, and the compromises it includes 
for fully transparent recovery are acceptable. However, it has 
limitations. For example, versions are determined per object, not 
per extent in the object. Hence, version recovery for I/O to a 
shared file may continue to result in eviction of cached data. 
Version recovery is of particular importance because it enables a 
client to re-integrate changes long after the initial recovery, for 
example, after a disconnection. 
Adaptive Timeouts. Client requests see huge variations in 
processing time, due to congestion and server load. Hence, 
adaptive timeout behavior is very attractive and now available 
with Lustre.
When a server knows that it cannot meet an expected response 
time for a client request, it sends an early response to the client 
including a best guess for the required processing time. If the 
client does not receive such a message, the client assumes a 
failure of the server and, after the server recovers, resends the 
request.
With adaptive timeouts, failover time on lightly-loaded clusters 
drops from minutes to seconds. Adaptive timeouts are expected to 
be highly effective when server loading is involved, but it is more 
difficult to adapt to all cases of network congestion. 

3. CONCLUSION
Further challenges lie ahead as systems scale from petaflops to 
exaflops over the coming decade or two. Several aspects of Lustre 
file system infrastructure help make possible the scalability of a 
network file system to support very large clusters.  
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