
Scalable Locking and Recovery for Network File Systems
Peter. J. Braam

Sun Microsystems, Inc.
500 Eldorado Blvd, Bldg 5

Maildrop
Broomfield, CO 80021

peter.braam@sun.com

ABSTRACT
Petascale computing systems pose serious scalability challenges
for any data storage system. Lustre is a scalable, secure, robust,
highly-available cluster file system that has been successfully
deployed on some of the largest supercomputing systems in the
world, including the BlueGene/L supercomputer at the Lawrence
Livermore National Laboratory (LLNL), the Red Storm
supercluster at Sandia National Laboratories and the Jaguar
supercomputer at the Oak Ridge National Laboratory. This paper
provides file system developers with insight into how network file
system scalability is addressed in the Lustre file system through
policies and algorithms that support distributed lock management
and options for facilitating recovery after a compute node failure
in a large scale cluster. These design approaches can be applied to
the scaling of other file systems to support large clusters.

Categories and Subject Descriptors
D.2.11 Software Architectures

General Terms
algorithms, performance, design

Keywords
petascale, locking, clusters, congestion, recovery

1. LOCKING STRATEGIES AT SCALE
Protecting the integrity of cached data through the use of
distributed locks goes back at least to the VAX cluster file system
and possibly even further. When distributed locks are used in a
very large cluster with extremely large files, several interesting
new issues appear. The locking model has many subtle variations,
but, for the purpose of this discussion, it may be assumed that
resources are protected with single-writer, multiple-reader locks.

1.1 Lock Matching
When locks are acquired by clients in a Lustre file system, they
are checked against already-granted locks for conflicts. If
conflicting locks exist, they have to be revoked through a callback
to the lock holder. If no conflicting locks exist, the lock can be
granted immediately. It is very common for a very large number
of compatible read locks to be granted simultaneously, for
example, when a client wants to perform a lookup in a directory
or when many clients read from one file or write to disjoint
extents in one file.

To optimize the checks for lock compatibility, the linear lists that
traditional lock managers use were replaced in Lustre by skip
lists, which make fast compatibility checks. First introduced by
William Pugh, skip lists incorporate multiple pointers that aid in
searching, as shown in Figure 1. When file extents are used, the
lists of extents are replaced by an interval tree, making lock
matching dramatically faster.

a

b

c

d

e

3 76 9 NIL

3

3

3

3

7

7

7

7

6 9 NIL

6

9 NIL

6

9

9

NIL

NIL 6

12 17 19 21 25 26

26

26

26

26

25

25

25

25
21

21

21

21

19

19

19

19

17

17

17

17

12

12

12

12

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’07, November 10–16, 2007, Reno, Nevada, U.S.A.
Copyright 2007 ACM 978-1-59593-899-2/07/11…$5.00.

Figure 1. Skip lists showing linked lists
with additional pointers

17

Proceedings of the 2nd international Petascale Data Storage Workshop (PDSW '07)
held during Supercomputing '07. November 11, 2007, Reno, NV.

Figure 2 (top) shows a set of 10 intervals sorted bottom to top by
left endpoint. Figure 2 (bottom) shows an equivalent interval tree.

[16,21]

[16,21] [26,26] [17,19] [15,23]

[19,20]

[25,30]

[6,10] [0,3]

[8,9]
23

3 10 20

30

30

19 23 20 26

max
int

0 5 10 15 20 25 30

0 3
5 8

6 10
8 9

15 23
16 21

17 19
19 20

25 30
26 26

Figure 2. An interval tree representing
a sorted list of intervals.

1.2 Lock Contention
Lock contention occurs whenever one process attempts to acquire
a lock held by another process

Intent Locks. For metadata processes, such as the creation of files,
it is common for data to be heavily shared. For example, when all
clients create files in one directory, all the clients need
information about that directory. While traditional file systems
granted each client, in turn, a lock to modify the directory, Lustre
has introduced “intent locks”.

Intent locks contain a traditional request together with
information about the operation that is to be performed. At the
discretion of the server, the operation may be fully executed
without granting a lock. This allows Lustre to create files in a
shared directory with just a single remote procedure call (RPC)
per client, a feature that has proven robustly scalable to 128,000
clients on the BlueGene/L system at LLNL. Figure 3 illustrates
this behavior.

Adaptive I/O Locks. Although some applications involve heavy
I/O sharing, these scenarios are rare. Lustre adapts when heavy
I/O sharing occurs, but normally assumes that clients should be
granted locks and that these will not be frequently revoked. When
Lustre detects, in a short time window, that more than a certain
number of clients have obtained conflicting locks on a resource, it
denies lock requests from the clients and forces them to write-
through. This feature has proven invaluable for a number of
applications encountered on very large systems.

For the Catamount version of Lustre, called liblustre, which runs
on the ORNL Jaguar system, adaptive I/O locks are mandatory for
another reason. The Catamount nodes cannot be interrupted, and,
as a result, lock revocations are not processed. Read locks can be
revalidated upon re-use, but write locks are associated with dirty
data on the client, so Catamount does not take write locks.

Client

lookup

getattr

File Server

lookup

getattr

Network

Conventional getattr

lookup

create dir

getattr

lookup

Client

lustre_getattr

Metadata Server

lock module

mds_getattr

Network

Lustre getattr

lookup
intent
getattr

exercise
the intentlookup

getattr

Figure 3. Single RPC metadata operations with intent locks.

2. RECOVERY AT SCALE
Like most network file systems, Lustre uses an RPC model with
timeouts. On large clusters, the number of concurrent timeouts
can be significant, because uneven handling of requests can lead
to significant delays in request processing. Timeouts may result
when clients make requests to servers or when servers make
requests to clients. When clients make requests to servers, a long
timeout is acceptable. However, when servers make callback
requests for locks to clients, the servers expect a response in a
much shorter time to retain responsiveness of the cluster.

Serialized Timeouts. Relatively early in the development of
Lustre, scenarios in which timeouts happen repeatedly were
observed to be commonly-occurring. Such a scenario may result
when compute nodes in a group each create files in a directory
and then execute I/Os to the files, and then, subsequently, the
compute nodes are unreachable due to a circumstance such as a
network failure. If another node in the cluster (let us call it the
“listing” node) performs a directory listing with the "ls -l"
command, problems can occur. The listing node tries to get
attributes for each of the files sequentially as it makes its way
through the directory entries it is listing. For each request for file
attributes, the server does a lock callback to the client, and, since
the client is unreachable, the server callback times out. Even
though callback timeouts take just a few seconds, with a few
thousand clients, this leads to an unacceptable situation.

To address this problem, a ping message was introduced in
Lustre. A ping request is a periodic message from a client

18

showing it is alive and a reply demonstrating that the receiver is
alive. If the ping message is not received by the server, the server
cancels the client’s locks and closes its file handles, a process
known as eviction. The affected client only learns that this has
occurred when it next communicates with the server. It must then
discard its cached data. Thus, a ping message is similar in
function to a leased lock (a lock with a timeout), except that a
single ping message renews all Lustre locks, while a separate
lease renewal message would have to be sent for each leased lock.

Such ping messages are not only important to avoid serialized
timeouts. They are also vital when three-way communication is
involved. For example, a client may be communicating with two
servers and server 1 grants a capability, such as a lock, to the
client to enable the client to communicate with server 2. If, due to
a network failure, server 1 is not able to communicate with the
client holding the capability, it is important that such a capability
loses its validity so that server 1 can grant a conflicting capability
to another client. Clients and servers can agree that when a ping
message is not received, or no reply is received in response to a
ping message, the capability has lost its validity. After the
expiration of the ping message window, it is, therefore, safe for
servers to hand out a conflicting capability.

A ping message also allows a client to detect that a server has
failed when no response to the ping message is received from the
server. However, ping messages in large clusters can cause
considerable traffic. Lustre has been adapted to use ping services
that gather status from all servers so that a single ping message
from a client can convey all required information. Using this in
conjunction with a tree model for communication (for example,
by using all server nodes to handle pings) can lead to very
scalable pinging.

Interactions Among Multiple Locks. The Lustre striping model
stores file stripes on object server targets (OSTs) and performs
single-writer, multiple-reader locking on file extents by locking
extents in each object covered by the file extent. When I/O covers
a region that spans multiple OSSs, locks are taken on each of the
affected objects. The Lustre lock model is one that acquires a lock
and then references it on the client while the client uses it. After
use, the reference is dropped but the lock can remain cached.
Referenced locks cannot be revoked until the reference is
dropped.

The initial implementation for file data locking took locks on all
objects associated with a given logical extent in a file and
referenced these locks as they were acquired. In normal scenarios,
the locks were acquired quickly in a specific order and each lock
was referenced immediately after it was acquired.

A problem arises with this implementation in situations in which
both of the following occur:

� The client receives a callback for a lock that has just
been acquired.

� The client experiences a timeout while acquiring a
further lock associated with the file extent.

The problem is that the first lock is not released in time, because
the timeout for the second operation is longer. As a result, the
client that is experiencing problems with the server that has given

out lock (2) is now evicted by the server associated with lock (1).
This leads to cascading evictions, which are undesirable.

Lustre was changed to avoid this. The locks on extents in objects
are referenced while I/O to the object is taking place, but do not
remain referenced when I/O takes place to an extent in another
object. The locking of objects is effectively decoupled. This has
greatly reduced the number of timeouts experienced on larger
clusters, where problems with lock enqueues are relatively
common.

A further change to Lustre introduced more parallelism to the I/O
process to stripe objects. Figure 4 shows two interaction
diagrams with this enhanced object locking mechanism shown at
the bottom.

Figure 4. Object locking implementation in Lustre.

On a single client, this approach does not affect POSIX semantics
because the Linux kernel enforces POSIX semantics with

19

different, client-only locks in the Virtual File System (VFS).
However, in a cluster, one must be careful with operations that
have strict semantics, such as truncates and appending writes. For
such operations, the Lustre locking behavior on the left is used.

This methodology also illustrates another scalability principle that
was introduced for metadata, namely parallel operations.
Whenever possible, the clients engage all OSS nodes in parallel,
instead of serializing interactions with the OSS, as illustrated in
Figure 5.

Figure 5. Parallel operations between clients and servers.

Version Recovery. Lustre recovery provides transparent
completion of system calls in progress when servers fail over or
reboot. This recovery model is ideal from an application
perspective, but requires all clients to join the cluster immediately
after the servers become available again. When a cluster is very
large, or contains Catamount clients that may not have noticed a
server failure and subsequent restart, some clients may not rejoin
the cluster immediately after the recovery event. Consequently,
the recovery aborts, leading to evictions.
Version recovery is being introduced into Lustre to more
gracefully handle the situation where a client reconnects but
misses the initial recover window. If the client reconnects later
and finds that no version changes have taken place since an object
was last accessed, the client retries the operation that was in
progress and did not complete. After this retry, the client rejoins
the cluster. Cached data is only lost if an object was changed
while the client was not connected to the cluster, a decision again
based on the version.
This model appears to scale well, and the compromises it includes
for fully transparent recovery are acceptable. However, it has
limitations. For example, versions are determined per object, not
per extent in the object. Hence, version recovery for I/O to a
shared file may continue to result in eviction of cached data.
Version recovery is of particular importance because it enables a
client to re-integrate changes long after the initial recovery, for
example, after a disconnection.
Adaptive Timeouts. Client requests see huge variations in
processing time, due to congestion and server load. Hence,
adaptive timeout behavior is very attractive and now available
with Lustre.
When a server knows that it cannot meet an expected response
time for a client request, it sends an early response to the client
including a best guess for the required processing time. If the
client does not receive such a message, the client assumes a
failure of the server and, after the server recovers, resends the
request.
With adaptive timeouts, failover time on lightly-loaded clusters
drops from minutes to seconds. Adaptive timeouts are expected to
be highly effective when server loading is involved, but it is more
difficult to adapt to all cases of network congestion.

3. CONCLUSION
Further challenges lie ahead as systems scale from petaflops to
exaflops over the coming decade or two. Several aspects of Lustre
file system infrastructure help make possible the scalability of a
network file system to support very large clusters.

20

