Initial Characterization of I/O in Large-Scale Deep Learning Applications

Fahim Chowdhury, Jialin Liu, Quincey Koziol, Thorsten Kurth, Steven Farrell, Suren Byna, Prabhat, and Weikuan Yu

November 12, 2018
Outline

➢ Objectives

➢ DL Benchmarks at NERSC

➢ Profiling Approaches

➢ Experimental Results

➢ Future Work
Outline

- Objectives
- DL Benchmarks at NERSC
- Profiling Approaches
- Experimental Results
- Future Work
Objectives

- Deep Learning (DL) applications demand large-scale computing facilities.
- DL applications require efficient I/O support in the data processing pipeline to accelerate the training phase.
- The goals of this project are
 - Exploring I/O patterns invoked through multiple DL applications running on HPC systems
 - Addressing possible bottlenecks caused by I/O in the training phase
 - Developing optimization strategies to overcome the possible I/O bottlenecks
Objectives

- Deep Learning (DL) applications demand large-scale computing facilities.
- DL applications require efficient I/O support in the data processing pipeline to accelerate the training phase.
- The goals of this project are
 - Exploring I/O patterns invoked through multiple DL applications running on HPC systems
 - Addressing possible bottlenecks caused by I/O in the training phase
 - Developing optimization strategies to overcome the possible I/O bottlenecks
Outline

- Objectives
- DL Benchmarks at NERSC
- Profiling Approaches
- Experimental Results
- Future Work
HEPCNNB Overview

- High Energy Physics Deep Learning Convolutional Neural Network Benchmark (HEPCNNB)
 - Runs on distributed TensorFlow using Horovod
 - Can generate particle events that can be described by standard model physics and particle events with R-parity violating Supersymmetry
 - Uses a 496 GB dataset of 2048 HDF5 files representing particle collisions generated by a fast Monte-Carlo generator named Delphes at CERN
CDB Overview

- Climate Data Benchmark (CDB)
 - Runs on distributed TensorFlow using Horovod
 - Can act as an image recognition model to detect patterns for extreme weather
 - Uses a 3.5 TB dataset of 62738 HDF5 images representing climate data
 - Leverages TensorFlow Dataset API and python’s multiprocessing package for input pipelining
Outline

- Objectives
- DL Benchmarks at NERSC
- Profiling Approaches
- Experimental Results
- Future Work
Profiling Approaches

- Develop *TimeLogger* tool based on python to profile application layer
- Determine the total latency from merged interval list for each training component
- Explore TensorFlow Runtime Tracing Metadata Visualization (TRTMV) tool developed at Google and extract I/O specific metadata
- Working on integration of runtime metadata from application and framework layer
- Work available in: https://github.com/NERSC/DL-Parallel-IO
Outline

- Objectives
- DL Benchmarks at NERSC
- Profiling Approaches
- Experimental Results
- Future Work
HEPCNNB Latency Breakdown

- I/O takes more time when Global Shuffling is introduced
- Global Shuffling affects I/O even for small dataset and only 5 epochs training
- I/O bottleneck can become more severe with increasing epochs
- HEPCNNB Read Bandwidth -

- I/O takes more time when Global Shuffling is introduced
- Global Shuffling affects I/O even for small dataset and only 5 epochs training
- I/O bottleneck can become more severe with increasing epochs
The percentage of I/O in the training process is more when dataset is larger.
The I/O percentage increases with the number of nodes.
Training benefits more from the scaling than I/O.
Outline

- Objectives
- DL Benchmarks at NERSC
- Profiling Approaches
- Experimental Results
- Future Work
Future Work

- To integrate TRTMV results with TimeLogger data for better profiling of highly parallelized I/O pipeline
- To explore the I/O patterns and determine possible I/O bottlenecks in distributed TensorFlow
- To develop an optimized cross-framework I/O strategy to overcome the possible I/O bottlenecks
Thank You