Initial Characterization of I/O in Large-Scale Deep Learning
Applications

Jialin Liu*
Suren Byna*

"Florida State University
{fchowdhu, yuw}@cs.fsu.edu

Fahim Chowdhury®

[. INTRODUCTION

In recent times, the emergence of Deep Learning (DL) is reflected by
its use in various recent applications to solve critical real-life problems in
the industry and research world. For example, High Energy Physics Deep
Learning Convolutional Neural Network Benchmark (HEPCNNB) [3]
and Climate Data Benchmark (CDB) [1] developed and maintained by
the National Energy Research Scientific Computing Center (NERSC)
are some of the important applications for the research on high-energy
particle physics and atmospheric science respectively. All of these DL
applications are both compute- and data-intensive, i.e., demand the use
of large-scale computing facilities for fast execution and high accuracy.
Particularly, these large-scale DL applications require efficient I/O support
in their data processing pipeline. The exploration and characterization
of these I/O patterns are the indispensable prerequisites to developing
optimized and efficient I/O modules. The goal of this work is to
examine and extract interesting I/O patterns from multiple state-of-the-
art DL applications running on HPC systems at NERSC and develop
optimization strategies to overcome the possible I/O bottlenecks. So far,
we have collected and organized 1/O specific information of HEPCNNB
and CDB that provide us with the knowledge to carry the research
forward.

II. PROFILING APPROACHES

We initiate a deep dive into the details of I/O requested by two im-
portant DL application benchmarks, i.e. HEPCNNB and CDB, developed
at NERSC using TensorFlow [4] and Horovod [6]. HEPCNNB is used
to generate particle events from a 496 GB dataset of 2048 HDFS5 files,
and CDB is developed to detect extreme weather condition patterns from
3.5 TB dataset of 62738 HDF5 image files. We build a tool named
TimeLogger to perform I/O focused profiling of the internal executions
of these DL benchmarks. We log the start and end time of basic training
phase components, i.e. Read, Load, Training and Checkpointing.
Later, we merge common time intervals per component and determine
latency from the merged interval set. We deduce the bandwidth through
dividing the size of fetched data by read latency. The results from
this instrumentation help to comprehend the impact of global shuffling
and dataset size on the I/O of DL applications. In addition, the results
inspire to dive deeper into more precise profiling for better perception of
the I/O patterns in applications like CDB that has high parallelism via
multi-threading in TensorFlow and multi-processing in Python. Hence,
we explore the TensorFlow Timeline module and TensorFlow Runtime
Tracing Metadata Visualization (TRTMV) [5] to extract the metadata
generated by internal executions of TensorFlow and combine the data with
the results generated by TimeLogger. We are working on this integration
of metadata collected from application and framework layer to understand
the possible overlapping of I/O and training, and profile the complicated
I/O pipeline more accurately. The current status of the work including
all the related documents is available on NERSC github repository [2].

III. INITIAL RESULTS

We leverage the TimeLogger tool and auxiliary utility modules to
generate the time breakdown of training phase in both HEPCNNB and
CDB. We measure the latency of each component and 1/0 bandwidth by
scale-out tests on Cori, the Cray XC40 supercomputer at NERSC. We
utilize the nodes with Intel Xeon Phi Knight’s Landing (KNL) processors

Quincey Koziol*
Prabhat*
*Lawrence Berkeley National Laboratory

{jalnliu, koziol, tkurth, sfarrell, sbyna, prabhat} @1bl.gov

Thorsten Kurth* Steven Farrell*

Weikuan Yu'

and keep the dataset on Lustre mountpoint with stripe size 1 MB and
stripe count 1.

3000 16000
B Read EEE Read

Load 14000 Training
Training
[Checkpointing

2500
12000

N
°
1S3
=)

10000

8000
1000 6000
4000

Latency (seconds)
G
S
3

Latency (seconds)

o
o
=)

2000

e M Y2 A7)
256 512 1024
Number of Nodes

(a) HEPCNNB Five Epochs

o

Number of Nodes

(b) CDB Three Epochs

Fig. 1: Scale-out Latency

As depicted in Fig.1(a), in case of five epochs experiment on HEP-
CNNB, the read latency is 8.01%, 7.72%, 6.83%, 6.16% and 1.49% of
training time for 64, 128, 256, 512 and 1024 nodes respectively. Before
we implemented global shuffling in HEPCNNB, the read time used to be
3.60%, 3.08%, 3.17%, 2.91% and 1.44% of training time for 64, 128,
256, 512 and 1024 nodes respectively. Hence, if adding global shuffling
can increase the I/O percentage by almost two times for only five epochs
and a small dataset, we can deduce that, it will degrade 1/O performance
even more for real-life scenario where there can be thousands of epochs
with larger datasets. According to Fig.1(b), for three epochs experiment
on CDB, the read latency is 8.73%, 15.05%, 10.63% and 11.04% of the
training time for 64, 128, 256 and 512 nodes respectively. The larger
dataset size is the reason behind this higher percentage of I/O latency
compared to HEPCCNB, even though CDB takes more time for training
due to its much denser neural network.

IV. FUTURE WORK

With a view to exposing the information on the possible overlap of
I/0 and training in applications like CDB, we are working on integrating
the results from TimeLogger and TRTMYV. Besides, we plan to optimize
HEPCNNB by incorporating prefetching technique in the data pipeline.
In the long run, we aim to design and incorporate an optimized cross-
framework I/O strategy to overcome the possible I/0O bottlenecks, and
eventually speed-up DL applications by leveraging HPC infrastructure.

Acknowledgment This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility operated under Contract No. DE-
AC02-05CH11231.

REFERENCES

[1] Climate Data Benchmark. https://github.com/azrael417/ClimDeepLearn.

[2] DL-Parallel-IO. https://github.com/NERSC/DL-Parallel-10.

[3] High Energy Physics Convolutional Neural Network Benchmark. https:
//github.com/NERSC/hep_cnn_benchmark.

[4] M. Abadi, A. Agarwal, P. Barham, and et al. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015.

[5] S. H. Hashemi. Tensorflow runtime tracing metadata visualization. https:
//github.com/x1drx/tensorflow-runtime- metadata- visualization, 2018.

[6] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

