
Toward Understanding
I/O Behavior in HPC Workflows

Jakob Lüttgau, Shane Snyder, Phil Carns, Justin M. Wozniak, Julian Kunkel, Thomas Ludwig

PDSW-DISC, SC’18
November 12, 2018 / Dallas, TX

Overview Motivation

Workflows & I/O Monitoring

Architecture

Demo

Outlook & Summary

Trying to add a missing link so we can move
closer to realizing smarter systems...

Require new interfaces to preserve

information about structure of data.

How to anticipate user intentions and I/O

behavior of applications ?

Require tools to observe and record system

activity as a basis to gain insight

Workflows
a HPC Storage
Perspective?

Workflows offer …

… anticipatable future activity

… implicit intent to be discovered

… explicit intent description

Workflow Engines: Swift, Cylc, Tigres, etc.

Cylc, Swift-k, Fireworks

Job centric, with tasks and data targets. Tasks are

distributed and possibly run on remote systems.

Data products might be moved between sites.

Usually, a coarse granular dependency graph.

Swift-t, Tigres, Spark/RDD Lineage, QDO

A large integrated (MPI) application with many

different tasks within the application. With

exascale in mind and also closer to in situ enabled

workflows.

Closer to a programming language.

Holistic
I/O Monitoring
for HPC

Tracking at the Application/Library Layer

Total Knowledge of I/O in Data Centers

Darshan: Instrumentation at Library/Application Layer

$ export LD_PRELOAD=libdarshan.so
$ mpiexec -np 4 ./hellompi

[Darshan] HPC I/O Characterization Tool - https://www.mcs.anl.gov/research/projects/darshan/

TOKIO: Total Knowledge of Input/Output

Comprehensive capture of I/O activity

Support different storage services in data center

May require privileged access in many cases

[TOKIO] http://www.nersc.gov/research-and-development/tokio/

Toward Understanding Workflow I/O

Combine workflow descriptions with monitoring information from Darshan/TOKIO, etc.

Benefits:

Insight useful for operating decisions and system design

Communication with users, relatable to their scientific process

Source of information for smarter systems

Requirements:

Support multiple workflow engines as communities use different tools across difference sites

Explore convenient toolchain for researchers and operators

User facing component to communicate advice

Architecture for Augmenting I/O in Workflows

Architecture for Augmenting I/O in Workflows

Architecture for Augmenting I/O in Workflows

Architecture for Augmenting I/O in Workflows

Case Study
& Demonstration

Example Workflow

Research Perspective

User Perspective

int X = 50, Y = 50;
int A[][];
int B[];

foreach x in [0:X-1] {
 foreach y in [0:Y-1] {
 if (check(x, y)) { // mask a region which gets computed
 A[x][y] = g(f(x), f(y)); // compute result for this cell (a physics process)
 } else {
 A[x][y] = 0; // default for skipped cells
 }
 }
 B[x] = sum(A[x]); // compute some aggregate metric
}

http://swift-lang.org

https://cylc.github.io/cylc/

[scheduling]
 initial cycle point = 2021
 final cycle point = 2023
 [[dependencies]]
 [[[R1]]] # Initial cycle point.
 graph = prep => model
 [[[R//P1Y]]] # Yearly cycling.
 graph = model[-P1D] => model => post
 [[[R1/P0Y]]] # Final cycle point.
 graph = post => stop

[runtime]
 [[prep]]
 script = mpiexec -np 1 ./prep
 [[model]]
 script = mpiexec -np 4 ./model
 [[post]]
 script = mpiexec -np 1 ./post

Perspective for I/O Research and Site Operating?

Interactive Tools/Dashboards to ease navigating overwhelming amounts of log data, with “algebra”-like

semantics for convenient aggregation of multiple tasks, data objects or pipelines.

Python Library for use in, e.g., jupyter notebooks, to draft/prototype/provide templates for more

sophisticated and reproducible analysis.

JavaScript Packages (NPM) for visualisation/tools allowing easy reuse in custom tools , jupyter

notebooks (widget plugins), and dashboards (e.g., Grafana).

Communication with Scientists/Developers

Maintain affinity to scientists perspective

Stick to relationship of tasks/pipelines used by scientists/developers

Use intuitiv presentation of data-flow by extending graph of workflow

Interactive to manage complexity

100s or 1000s of different tasks and files in a workflow

Possibly, millions of log records per task (HTC, UQ)

Make it easy to aggregate multiple log records

Integration with expert advice

Human in the loop

Automatic advisories with machine learning (mid/long-term)

http://my.datacenter/workflow-io?worfklow_id=314159

What a real task
might look like though...

Analyzing Access Patterns

Output Files

In this case
diagnostic files

otherwise
not so clear

Input Files

Toward
Adaptive
I/O Systems

Influence Job Scheduling decisions

Support I/O Middleware
Data Placement

Transformations

Use Case 1: I/O-Aware Scheduling for Workflows

Domain Decomposition

Raw

Data Representation

Layout on Storage

Pre/Post Out Post-Processing

Single Value:
 Temperature Anomaly
 Some average Images/Movies

CSV/Plots (x=time, y=CO2)

optimized for
fast writing

Binary,
optimized for
transmission

optimized for
fast reading
or locality

Use Case 2: Benefits for I/O Middleware (1/2)

Use Case 2: Benefits for I/O Middleware (2/2)

Discussion
Summary

Requirements for Workflow Engines

Expose Context / DAGs of Workflows

Data/(file) notions

Reflection in execution runtime?

Requirements for Monitoring Solutions

Pick up context to allow associations

Support user-specific metadata with record

API to interact with monitoring toolkit

Allow counters per MPI Communicator

Requirements for Application Developers

Make intent explicit: use libs/DSL (e.g. HDF5)

Enable instrumentation with a subset of runs

Collect traces and logs for a training body.

Thank you!
Questions?

luettgau@dkrz.de

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,

under Contract DE-AC02-06CH11357.

Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement,
recommendation, or favor by the United States Government, the

Department of Energy, or the National Energy Technology
Laboratory. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States
Government, the Department of Energy, or the National Energy
Technology Laboratory, and shall not be used for advertising or

product endorsement purposes.

This work was supported by the ESiWACE project, which
received funding from the EU Horizon 2020 research and

innovation programme under grant agreement No 675191.

The information and views set out in this work are those of the
author(s) and do not necessarily reflect the official opinion of the

European Union. Neither the European Union institutions and
bodies nor any person acting on their behalf may be held

responsible for the use which may be made of the information
contained therein.

Disclaimer

Appendix Generic HPC Workflows

Example Climate Workflow

Common Scientific Workflows in HPC
What makes a workflow?

SIM

UQ or HTC

in situ
SIM and HTC/UQ are derived figures from [1]. For outlook on workflows refer to [2].
[1] LANL, NERSC, and SNL, “APEX Workflows.”, Whitepaper, Mar. 2016
Online: https://www.nersc.gov/assets/apex-workflows-v2.pdf
[2] E. Deelman et al., “The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175, Jan. 2018.

Data-Intensive Exascale Workflow: Climate Modeling

ICON is a climate model used by Researchers at Max-Planck and by the German Weather Service (DWD).
CDO is a pre/post-processing tool (climate operators) for NetCDF files.

ParaView is a popular visualisation toolkit built on top of VTK. 33/31

http://www.youtube.com/watch?v=ji4nno-fsvw&t=5

https://cylc.github.io/cylc/

[scheduling]
 initial cycle point = 2021
 final cycle point = 2023
 [[dependencies]]
 [[[R1]]] # Initial cycle point.
 graph = prep => model
 [[[R//P1Y]]] # Yearly cycling.
 graph = model[-P1D] => model => post
 [[[R1/P0Y]]] # Final cycle point.
 graph = post => stop

[runtime]
 [[prep]]
 script = mpiexec -np 1 ./prep
 [[model]]
 script = mpiexec -np 4 ./model
 [[post]]
 script = mpiexec -np 1 ./post

