
PDSW-DISCS Artifact Evaluation Criteria 

Infrastructure 
We have an instance of Jenkins running at http://ci.falsifiable.us, maintained by members of the 
Systems Research Lab (SRL) at UC Santa Cruz. Detailed instructions on how to create an 
account on this service and how to use it is available here (also includes instructions on how to 
self-host it). This service allows researchers and students to easily automate the execution and 
validation of experimentation pipelines. Users of this service follow a convention for structuring 
their experiment repositories, which allows the service to be domain-agnostic. The service 
reports the status of an experimentation pipeline (fail, success or validated). 
 
NOTE: Using our server is not obligatory. However, we will require authors to provide a URL to 
the service they use (e.g., TravisCI, GitLabCI, CircleCI, Jenkins, etc) so reviewers can validate 
the repeatability of the submission using that service. 

Evaluation Criteria 
In order to be considered for an ACM badge, the pipelines associated to a submission must be 
in a healthy (runnable) state and automate the following: 
 

● Code and data dependencies. Code must reside on a version control system (e.g. 
github, gitlab, etc.). If datasets are used, then they should reside in a dataset 
management system (datapackage, gitlfs, dataverse, etc.). The experimentation 
pipelines must obtain the code/data from these services on every execution. 

● Setup. The pipeline should build and deploy the code under test. For example, if a 
pipeline is using containers or VMs to package their code, the pipeline should build the 
container/VM images prior to executing them. The goal of this is to verify that all the 
code and 3rd party dependencies are available at the time a pipeline runs, as well as the 
instructions on how to build the software. 

● Resource allocation. If a pipeline requires a cluster or custom hardware to reproduce 
results, resource allocation must be done as part of the execution of the pipeline. This 
allocation can be static or dynamic. For example, if an experiment runs on custom 
hardware, the pipeline can statically allocate (i.e. hardcode IP/hostnames) the machines 
where the code under study runs (e.g. GPU/FPGA nodes). Alternatively, a pipeline can 
dynamically allocate nodes (using infrastructure automation tools) on CloudLab, 
Chameleon, Grid5k, SLURM, Terraform (EC2, GCE, etc.), etc. 

● Validation. Scripts must verify that the output corroborates the claims made on the 
article. For example, the pipeline might check that the throughput of a system is within 

http://ci.falsifiable.us/
https://popper.readthedocs.io/en/latest/ci/jenkins.html
http://popper.readthedocs.io/en/latest/protocol/intro_to_popper.html#repository-structure
https://travis-ci.org/
https://about.gitlab.com/gitlab-ci/
https://circleci.com/
https://jenkins-ci.org/
https://www.acm.org/publications/policies/artifact-review-badging
https://bitbucket.org/barnstorm/geni-lib/
https://www.chameleoncloud.org/blog/2018/06/11/enos-framework-experimenting-openstack/
https://www.grid5000.fr/mediawiki/index.php/Getting_Started
https://slurm.schedmd.com/quickstart.html
https://www.terraform.io/


an expected confidence interval (e.g. defined with respect to a baseline obtained at 
runtime). 

A list of example pipelines meeting the above criteria: 
 

● BLIS paper. We took an appendix and turned it into executable pipeline. 
● Proxy app. Runs LULESH linked against MPIp to capture runtime MPI perf metrics. 
● Linux kernel development. Uses a VM to compile, test and deploy Linux 
● Relational database performance. Runs pgbench to compare two versions of postgres. 

 
Many more available at this page. 

Questions & Answers 
Since the reproducibility submission process is new, we expect quite a few questions. To make 
the process of answering questions more efficient, please use our gitter room to browse for 
possible answers or post your question. 
 

http://popper.readthedocs.io/en/docs-reorg/sections/examples.html#applied-mathematical-science
http://popper.readthedocs.io/en/docs-reorg/sections/examples.html#high-performance-computing
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/linux-cgroups
https://github.com/popperized/popper-readthedocs-examples/tree/master/pipelines/pgbench
http://popper.rtfd.io/en/docs-reorg/sections/examples.html
https://gitter.im/falsifiable-us/artifact-evaluation

