NUMA-Aware Thread and Resource Scheduling for Terabit Data Movement

Taeuk Kim, Awais Khan, Youngjae Kim, Sungyong Park, Scott Atchley

PDSW-DISCS 17 WIP session
November 13, 2017, Denver, USA
Need for Data Coupling over ESnet

• Data Coupling across HPC facilities
 - Nuclear interaction datasets generated at NERSC needed at the OLCF for Peta-scale simulation
 - Climate simulations run at ALCF and OLCF validated with BER datasets at ORNL data centers
Terabits Network Environment

- Terabits network improvement only contributed the network transfer rate.

But, data sets are stored at slow storage systems!
LADS solved the impedance mismatch problem between the faster network and slower storage system!
What Memory Bottleneck Occurs in LADS?
Architectural Overview for LADS

• NUMA-based DTN Architecture in Source and Sink
Memory Bottleneck with Single RMA Buffer

- NUMA-based DTN Architecture in Source and Sink
Memory Bottleneck with Single RMA Buffer

- NUMA-based DTN Architecture in Source and Sink

Remote Memory Accesses!!!

- CPU Socket 1 accessing RMA Buffer hosted by CPU Socket 0

Diagram showing NUMA node 0, NUMA node 1, NUMA node 2, and NUMA node 3 with RMA buffer and DRAM.
Multiple RMA Buffers

- Distributing the RMA buffer to all CPU sockets
 - To reduce the remote socket’s memory access
Multiple RMA Buffers

Possibility for accessing remote socket’s memory reduced!
Memory-aware Thread Scheduling (MTS)

- Binding all threads to in-socket RMA buffer
- Load balancing among in-socket NUMA nodes
Memory-aware Thread Scheduling (MTS)

Local Memory Accesses & Load Balancing

- NUMA node 0
- NUMA node 1
- NUMA node 2
- NUMA node 3
- CPU socket 0
- CPU socket 1
- DRAM
- RMA buffer
- QPI
Test-bed Configuration

• Data Transfer Nodes (DTNs)
 ▪ 2 CPU sockets, 4 NUMA nodes, 24 cores
 ▪ 128GB memory
 ▪ InfiniBand EDR (100Gb/s)

• Workloads
 ▪ 8x3GB files (Big file workload)
 ▪ 24,000x1MB files (Small file workload)

• Storage Systems
 ▪ We used the memory file system (tmpfs) to eliminate storage bottlenecks.

![Diagram showing data transfer nodes and workloads]

- DTN source
- IB QDR (40Gb/s)
- DTN sink
- Memory File System (tmpfs)
- RAM

LABORATORY FOR ADVANCED SYSTEM SOFTWARE
SOGANG UNIVERSITY
Evaluation

Throughput (MB/s)

Number of I/O Threads

- Single RMA Buffer
- NUMA-aware Scheduling
Evaluation

Throughput increased to an average of 24.3%!
Contact:
Taeuk Kim (taugi323@sogang.ac.kr)
Department of Computer Science and Engineering
Sogang University, Seoul, Republic of KOREA