
 1

Mero: Co-Designing an Object Store for Extreme Scale
Nikita Danilov (nikita.danilov@seagate.com) [Seagate]

Nathan Rutman (nathan.rutman@seagate.com) [Seagate]
Sai Narasimhamurthy (sai.narasimhamurthy@seagate.com) [Seagate]

John Bent (john.bent@seagategov.com) [Seagate Government Solutions]

Abstract
Within the HPC community, there is consensus that
Exascale1 computing will be plagued with issues related to
data I/O performance and data storage infrastructure
reliability, caused primarily by the growing gap between
compute and storage performance, and the ever increasing
volumes of data generated by scientific simulations,
instruments and sensors. The architectural assumptions for
extreme computing are now changing to accommodate
these extreme volumes of data as they transit through
scientific workflows. Historically, however, there has been
a disconnect between HPC users of extreme-scale storage
systems and designers of such systems, as designers make
architectural decisions based on an incomplete picture of
the use cases they are required to address and users
construct individualized workarounds to adjust as
necessary. This paper presents the co-design process for
deriving an Exascale architecture and presents one such
exemplar system: Mero, an object storage software solution
specifically architected for BDEC.2 We systematically
gather co-design application requirements from the extreme
scale HPC and I/O community and then corroborate those
inputs through real world extreme scale use cases, to derive
the architecture for Mero.

Keywords

Exascale, Object Store, HPC I/O, Hierarchical Storage
Systems, BDEC

1. Introduction
Exascale computing is characterised by the availability of
an infrastructure to support computational capability in the
order of an Exaflop. Currently, this definition is broadly
understood to include storage and analysis of an Exabyte or
more of data as part of a scientific workflow or a
simulation. Based on recent estimates, we anticipate that
Exascale computing infrastructures will be available in the
2022 timeframe. As relevant to Exascale, the landscape for
HPC-related storage is changing with innovations in new
device technologies, such as Flash, and other forthcoming
non-volatile memory technologies. The optimal use of

1 All of our arguments apply for solutions beyond Exascale, which can be

generalized as extreme scale. The terms "extreme scale" and "Exascale"
are used interchangeably in this paper.

2 Big Data Extreme Compute – A term used to indicate data centric
extreme computing.

these devices in the I/O hierarchy, in concert with existing
disk technology, is just beginning to be explored in the
HPC realm [1][2].

The inclusion of proliferating quantities of scientific and
instrumented data into scientific workflows further
exacerbates storage challenges in HPC deployments, the
implications of which are being discussed by the BDEC
community. As an example, when fully operational, the
Square Kilometre Array [3] experiment will generate one
Exabyte of raw data every day data that needs to be
reduced, processed and analysed.

Mero is a next generation object storage software
solution, built from the ground up, to cater to data-
centric Exascale computing use cases. Mero can suitably
exploit new storage devices in the I/O hierarchy, enable
the use of compute capability in the I/O stack for
applications and provide much needed capabilities for
I/O performance scaling and efficiency in BDEC-type
use cases.

The primary objective of this paper is to describe a
systematic co-design exercise that consists of gathering
architectural inputs from the HPC I/O community and
corroborating them through real-world BDEC-type use
cases in the SAGE EU project [4]. These descriptions then
inform the top-level software architectural considerations
of Mero.

2. Background and Related Work
The process of designing Mero for Exascale has been
different from what has been done for other HPC-level
parallel file and object storage systems, such as Lustre [5]
and Ceph [6]. Although tremendously successful for early
Petascale infrastructures and cloud storage use cases, they
used a relatively ad-hoc design process of architecting for
Exascale layered on a foundation of older architectural
assumptions.

When Lustre was first designed in 1999, the hardware
assumptions about concurrencies, heterogeneity and
parallelism were very different. Extremely disruptive
innovations in hardware architectures, such as many core
processors and heterogeneous processing units such as
GPUs, occurred years later. Hence, the process of
repurposing Lustre for Exascale computing I/O stacks
involves the introduction of additional functionality layered
around the file system, which results in heavy overheads.

 2

One such example is the Fast Forward [7] I/O stack which,
as proposed, would have needed many layers to support
Lustre, as compared to the relatively straightforward design
of Mero, shown in Figure 1:

Figure 1: Extreme Scale I/O Stacks: Lustre in the

FastForward Project vs. Mero

A fundamental problem with incumbent parallel file
systems in HPC is that they are layered on top of other
software abstractions, such as local file systems and local
RAID systems, which were designed with entirely different
software stacks and access patterns in mind. This design
introduces the possibility of latency-inducing context
switches and memory copies, the possibility of redundant
functionalities, such as compression, incompatible
interfaces and unnecessarily excessive amounts of metadata
duplicated across multiple layers. Further, the cores of the
software kernels in these parallel file systems need to be
heavily patched to get them Exascale-ready, resulting in
continued problems. For example, consider the plethora of
external middleware and underlying storage layers that
have been developed to bring parallel file systems forward
from Petascale to Exascale. Examples include Zest [8],
Giga+ [9], PLFS [10], SCR [11], and the ZFS [12] backend
to Lustre. Additional efforts, such as Lustre DNE Phases 1
and 2, have addressed these issues internally, within
parallel file systems.

Considering the challenges with traditional parallel file
systems, there has been a case to move towards using
object stores to build extreme scale HPC storage systems
[13][14]. However, object stores were primarily designed
for cloud environments where, again, assumptions
regarding parallelism and usage models are entirely
different. Object stores fall short of meeting many of the
I/O requirements of Extreme Scale Computing and need to
be heavily re-architected and patched to be used in
Exascale environments. Taking the example of Ceph, the
following issues are already apparent:

• Architectural performance constraints: Synchronous
writes in Ceph mean that applications are blocked from
progressing until data is committed to disk [15]. These
latencies need to be hidden from applications through
additional tiers, leading to some of the same challenges
of working with a many-layered software stack
discussed earlier, regarding the Fast Forward project
proposed for Lustre.

• Not built for multi-tier hierarchies: Ceph does not yet
support ecosystem components, such as HSM,
although this feature is starting to be addressed
[16][17]. Clearly, mechanisms such as HSM in Ceph
seem to be built for very limited tiering conditions
(Scratch, Archive, etc.), and may still require
additional work to support deeper I/O hierarchies as
required for Exascale storage.

• Extensibility features in Ceph supporting additional
services are not systematically covered: Although
work has been done to incorporate several specific
features via plug-ins (e.g. erasure coding [18]) other
missing functionality is being added by layering
services on top of Ceph [19][20]. In contrast, support
for additional services and robust extensibility through
plug-ins is one of the core tenets of the architecture of
Mero. This architectural design will be essential to
provide a path for smooth evolution and the addition of
new features on top of a well-defined core.

• HPC-style access: Insufficiently flexible core API
(libRados)[21] to provide HPC-friendly access
methods such as asynchronous transactional collective
bulk-I/O.

These issues reflect development of incumbent file systems
that lack a well-defined co-design process, resulting in
designs that are heavily biased towards the assumptions and
backgrounds of storage architects, rather than those based
on HPC community user and stakeholder inputs.

3. Mero Co-Design Inputs: Quality Attribute
Workshops

Mero's inception can be traced to 2010 when a group of
Lustre community architects (including the file system's
founders and early contributors to the project) gathered to
systematically analyse several limitations of Lustre and
consider a base design for an Exascale-capable I/O storage
technology. This initial meeting was held in Paris in 2009.
The group recognised a compelling need to work on a
bottom-up design with significant, sustained involvement
of the HPC application and user community.

Accordingly, in 2011, the Exascale I/O Workgroup
(EIOW) was formed to gather requirements for general I/O
middleware for Exascale. The EIOW was adopted as a
supporting initiative of the European Open File System
(EOFS) [22] organisation. Under the auspices of
EOFS/EIOW, the principal participants decided to host

 3

multiple Quality Attribute Workshops (QAWs), to gather
comprehensive inputs from HPC application developers,
users, data centre administrators and storage architects
regarding the new architecture. Three such workshops were
held in 2012 (in Munich, Portland and Tokyo), with
participation from 35 leading HPC-focussed organisations.

The QAWs were part of the process defined by the
Architecture Centric Engineering (ACE) initiative from the
Software Engineering Institute (SEI) at Carnegie Mellon
University [23] by which requirements are gathered after an
introductory presentation about the system architecture, its
business objectives and its architectural drivers. At each
QAW, participants suggest Quality Attribute Scenarios
(QASs) that are discussed and added, in summary form, to
a master list. QASs are similar to use cases; they
systematically describe the system or user events that cause
the specific scenario. Duplicate QASs are removed and the
audience votes on relative primacy and importance of the
remaining QASs.

Summaries of the three QAWs, held in 2012, after the
initial meeting in Paris, are described below, including the
highest-ranking QASs identified at each workshop.

a. Munich QAW (Feb 2012)

The Munich workshop collected more than 40 Exascale
QASs in the areas of scalability, performance, availability
and data integrity. After the workshop participants voted,
the following qualities emerged:3

1. API Hints (guided mechanisms): This quality is
the capacity to implement actions and behaviours based on
data usage hints provided by applications and workflows.
These hints could indicate near future access, for example,
to enable the storage system to make data available at the
right tier at the right time. Also, it was agreed that hints
support should be integrated in the software stack, that is,
hints should be passed through all software layers and all
layers should be able to analyse and modify hints.

2. Tiered Storage Management: This is the capacity
to automatically handle data in tiered storage with
Hierarchical Storage Management (HSM) tools.

3. Data Layouts: With the arrival of new, non-
volatile memory technologies, there is a very strong case to
leverage the benefits of these innovations in the HPC I/O
stack. As each storage device technology (NVRAM, Flash,
disk, etc.) has its own performance and data retention
characteristics, it would make sense to distribute the
appropriate pieces of data, based on its usage
characteristics, to the right tier. This distribution of data
that spreads a single object across multiple tiers is called a
“layout”. A data distribution formula, unique for each
object, or classes of objects, can essentially drive these
layouts. Further, it is possible for this data to be

3 Because of space constraints in this paper, we have omitted detailed QAS

descriptions.

compressed, encrypted or deduplicated across these tiers,
leading to the potential for “compressed layouts”,
“encrypted layouts”, “deduplicated layouts”, etc.

4. Data Compression: It was agreed that there should
be mechanisms to implement lossy compression.

5. Plug-ins: A whole host of data management tools
were considered by workshop participants, such as
Information Lifecycle Management, Replication,
Migration, File System Checking, Indexing, In-Storage-
Compute, etc. Tracking these many features within the core
system adds massive complexity that may not be generally
useful and thus, justifies their implementation as plug-ins.

6. Storage System Telemetry and Simulation: The
group discussed existing methods to debug and analyse
systems, such as scouring through extremely large amounts
of unstructured logs looking for performance hotspots, etc.
and agreed that it would be highly undesirable and not
sustainable to use these techniques at Exascale. Lack of
observability in existing systems was deemed a critical
obstacle for practical scalability. There was consensus on a
requirement to collect very structured telemetry data from
different subsystems in a format that could be easily
analysed and processed. Further, the participants discussed
feeding these records into a simulator to analyse “what if”
scenarios.

b. Portland Quality Attribute Workshop (Apr 2012)

After careful review of the outcomes from the first QAW,
the Portland workshop defined 30 QASs and identified the
following key qualities:

1. Data Containers: Containers are, essentially,
virtualised abstractions of the storage system, that offer
multiple possible consolidations of data and infrastructure
as needed by applications and workflows. Initial
discussions on containers centered on the need to group
related workflow data structures within a container for easy
accessibility and manageability. Participants discussed
containers based on data formats such as HDF5, POSIX,
etc. However, the group also considered that it would be
possible to define containers based on performance aspects,
for example, a high performance container that only
exposes higher tiers or a volatile cache on a diskless client,
a persistent cache on a storage server, etc.

2. Experimental Data Handling: Participants
discussed examples such as the Square Kilometer Array.
Additionally, there could be cosmological simulations that
need to work with near real-time data received from the
telescopes as well as previously collected data—
simulations requiring data to be filtered, analysed and pre-
processed before being used. This is a classic example of
scientific insights derived not just from simulations, but
real instrumented data that is collected as part of the
scientific workflow. Many such examples, including a few
simulations from CERN, were discussed.

 4

Thus, the storage system and its API need to be capable of
handling simulation I/O and also have the ability to directly
ingest (and process, in-storage) very large data sets from
external sources. This capability is extremely difficult to
achieve with incumbent parallel file systems, which are
primarily designed to work only with simulation I/O.
Extending the system's capabilities to work with real
scientific data, as described above, will overly complicate
the design of the I/O stack.

3. Distributed Transactions and Epochs: The group
agreed that storage systems need to get away from POSIX
consistency models and have the ability to roll back to
previous system states. Epochs and transactions effectively
eliminate the global barrier needed for checkpoints, a
problem that is exacerbated at Exascale [25] with,
potentially, billions of threads doing I/O. In the model of
distributed transactions and epochs, each thread associates
all writes made by it as part of an epoch entity and closes
the epoch once the I/O phase is completed. Multiple epochs
can be open in the system at the same time. In the event of
failure, the application threads can start from the last epoch
that was committed to persistent storage. By assuming a
reasonable level of support from the application (in the
form of the ability to report failures and to restart from a
past epoch boundary), epochs provide a lightweight and
scalable alternative to traditional ACID4 or POSIX
transactions.

c. Tokyo Quality Attribute Workshop (May 2012)

The Tokyo workshop identified the following qualities:

1. Lazy Commit and Roll-back: Participants agreed
that the storage system must be able to move from snapshot
to snapshot and be capable of rolling back to previous
states.

2. Plug-ins: There was consensus on the need for
data management plug-ins (e.g. Data Indexing) through the
previously introduced concept of a File Data Manipulation
Interface and the capability to support File Operation Logs.

3. ls-l Command: The group concurred that ls-l
command function is the Achilles heel of parallel file
systems and there is a need for adequate methods to
enumerate distributed containers.

4. Lightweight mechanisms to deal with the most
frequent recovery scenarios and build an HA system based
on similar concepts.

The QAW outcomes, including requirements and attributes
identified by the workshop participants, formed the core
architectural principles to build Mero and its API, Clovis.
Coincident to when the QAWs were held, initial BDEC
discussions started, led by several laboratories in the U.S.
Department of Energy. It was an opportune time to

4 Atomicity, Consistency, Isolation and Durability

corroborate the Mero architecture with proposed BDEC-
type use cases.

4. Mero Co-Design inputs: Extreme Scale Use
Cases

As discussed above, the QAWs provided key architectural
considerations to design Mero. Once built, the Mero
architecture was further validated against data-centric,
extreme computing use cases from the EU's SAGE project
[4] which implements a hierarchical storage system (using
many tiers of storage devices and in-built compute
capability) driven by Mero. The SAGE programme's D1.1
deliverable [24] presents diverse use cases in the domains
of Energy (Nuclear Fusion), Synchrotron experiments,
Climate and Weather Science, Bio-informatics and Big
Data Analytics that have been used to gather co-design
inputs for the project's Mero-based platform. The crucial
point of the co-design exercise is that the specified use
cases are BDEC-type rather than classic HPC style.

The co-design exercise for Mero included formal I/O
characterisation, SAGE architecture analysis, data retention
characterisation (use of multiple tiers driven by the object
store) and data scaling analysis (a detailed mathematical
analysis of I/O requirements) [24]. The formal I/O
characterisation exercise, for instance, included information
on data volumes, data intensity, data sizes, I/O parallelism,
inter-process I/O consistency, metadata parameters (such as
directory tree depth) and fault tolerance semantics.
Hence, the co-design process yielded a rich set of data
points and information, including very specific use case
inputs that were applied to cross check against and build on
architectural assumptions for Mero derived from the
QAWs.

5. Deriving the Mero Architecture
Inputs from the QAWs and the co-design process in the
SAGE project have yielded the following key
considerations for the Mero architecture. We reference
these attributes to the components shown in the high level
architectural view of Mero (Figure 2).

• Scalability (Horizontal and Vertical)

o Containerisation of data (as described in the QAW
outputs) [Component: Realm]

• Availability, reliability and fault tolerance

o Transaction management to move the storage
system from one stable epoch to another and the
ability to atomically group I/O requests to achieve
the same purpose [Component: DTM]

o Continuous availability for storage applications in
the face of constant storage and hardware failures
inherent at Exascale [Components: NBA and
Loom]

 5

o Elimination of the overhead of RAID rebuilds by
employing parity declustered RAID
techniques/Server Network Striping across the
cluster [Component: SNS]

• System Observability

o Availability of well defined, structured analytics,
diagnostics and telemetry data (user configurable)
[Component: FOL, includes the Analysis and
Diagnostics DataBase (ADDB) subcomponent]

• Quality of Implementation

o Address problems related to constantly patching
core elements of the storage software code by
having a relatively stable core on top of which
additional plug-ins and gateways can be easily
added

o Address implementation aspects of scalability (for
example, thread per request scalability issues
inherent in server architectures) [Component:
FOM, which is a threadless, non-blocking state
machine implementation]

o Address implementation aspects of scalability by
having a symmetric client server architecture, with
no distinction between clients and servers; any
node can either be a client requesting access or a
server serving up its storage resources. This is a
powerful paradigm, especially to expose compute
node local NVRAM and Flash resources.

• Extensibility or the capability of the system to track
evolving requirements; adding new features and
capabilities in a timely manner without sacrificing
system stability. Several example plug-ins are shown
in Figure 2.

o Ability to easily extend the core storage system to
support new features, such as indexing, ILM,
HSM, backup, migration, etc.

o Ability to add third-party gateways on top of the
storage system to support various access protocols
such as POSIX, S3, etc.

o Ability of the storage system to exploit local
compute resources to provide capability for in-
storage compute

o Plug-ins to accept guided I/O hints from
applications

• Data locality and hardware awareness

o Ability of each object data layout to span multiple
storage hardware tiers with the assumption there
will be three or more tiers (NVRAM, Flash and
disk) [Component: Layout]

§ Layouts also need to define data compression
(compressed layouts), encryption (encrypted
layouts), Parity Declustered RAID, etc.

Figure 2: Mero Top-Level Architecture Based on Co-Design

and QAWs

The Clovis API provides access to Mero through an access
interface, a management interface (providing telemetry
records) and an extension interface (providing operation
logs to build third-party plug-ins). Access gateways and
third-party plug-ins that can be added on top of Clovis are
shown in Figure 2. The Resource Manager (RM) controls
coherent caching and replication of storage resources such
as nodes, caches, object extents, quotas, locks, etc. by
external applications as well as Mero’s internal processes.
The Key Value Store (KVS) provides the basic key value
store for objects and stob abstracts underlying storage.

6. Conclusion and Next Steps

In this paper, we have described the co-design process and
provided a brief summary of the user inputs and key
considerations driving the architecture of Mero, a BDEC
storage software platform. As far as we know, Mero is the
first extreme scale I/O architecture developed from the
outset with significant community stakeholder involvement
and input. Our next steps are to present the detailed Mero
architecture and provide performance results for individual
software components and the entire Mero system as we
move towards Exascale.

7. Acknowledgements
We thank Juelich Supercomputing Center (Germany), the
Diamond Light Source (UK), the Culham Center for Fusion
Energy (UK), the Science and Technology Facilities
Council (UK), the German Research Center for Artificial
Intelligence (Germany) and the Royal Institute of
Technology (Sweden) for providing use case inputs
through the SAGE project and Dirk Pleiter (from Juelich)
for coordinating these inputs.

 6

8. References
[1] Liu, N.; Cope, J.; Carns, P. H.; Carothers, C. D.; Ross, R. B.;

Grider, G.; Crume, A. & Maltzahn, C. (2012), On the Role of
Burst Buffers in Leadership-Class Storage Systems, in
'MSST', IEEE Computer Society, pp. 1-11.

[2] Bent, J.; Faibish, S.; Ahrens, J.; Grider, G.; Patchett, J.;
Tzelnic, P. & Woodring, J. (2012), Jitter-Free Co-Processing
on a Prototype Exascale Storage Stack, in 'MSST' , IEEE
Computer Society

[3] SKA, https://www.skatelescope.org/sdp/, Accessed Sept’16
[4] SAGE, http://www.sagestorage.eu, Accessed Sept’16
[5] Lustre, https://www.lustre.org, Accessed Sept’16
[6] Ceph, https://www.ceph.com, Accessed Sept’16

[7] FastForward,
https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Stor
age+and+IO+Program+Documents, Accessed Sept’16

[8] P. Nowoczynski, N. Stone, J. Yanovich, and J. Sommerfield.
Zest: Checkpoint Storage System for Large Supercomputers.
In Proceedings of the 3rd Petascale Data Storage Workshop,
Austin, TX, November 2008.

[9] Giga+,
https://www.usenix.org/legacy/event/fast11/tech/full_papers/
PatilNew.pdf, Accessed Sept’16

[10] John Bent, Garth Gibson, Gary Grider, Ben McClelland,
Paul Nowoczynski, James Nunez, Milo Polte, and Meghan
Wingate. PLFS: A Checkpoint Filesystem for Parallel
Applications. In SC09, Portland, Oregon, November 2009

[11] SCR, http://computation.llnl.gov/projects/scalable-
checkpoint-restart-for-mpi, Accessed Sept’16

[12] ZFS, https://wiki.archlinux.org/index.php/ZFS, Accessed
Sept’16

[13] SWIFT,
http://docs.openstack.org/developer/swift/overview_architect
ure.html, Accessed Sept’16

[14] Ceph Storage, http://ceph.com/ceph-storage/, Accessed
Sept’16

[15] Librados Presentation,
http://events.linuxfoundation.org/sites/events/files/slides/201
50311 vault15 librados.pdf, Accessed Sept’16

[16] Ceph-Devel Discussion, http://www.spinics.net/lists/ceph-
devel/msg17159.html, Accessed Sept’16

[17] Towards Ceph Cold Storage,
http://tracker.ceph.com/projects/ceph/wiki/Towards_Ceph_C
old_Storage, Accessed Sept’16

[18] Ceph Erasure Coding,
http://docs.ceph.com/docs/hammer/rados/operations/erasure-
code-jerasure/ , Accessed Sept’16

[19] Collectd Github activity,
https://github.com/rochaporto/collectd-ceph, Accessed
Sept’16

[20] Ceph Dynamic Object Interfaces,
http://ceph.com/rados/dynamic-object-interfaces-with-lua/,
Accessed Sept’16

[21] Librados API Discussion
http://docs.ceph.com/docs/master/rados/api/librados/,
Accessed Sept’16

[22] EOFS, http://www.eofs.eu, Accessed Sept’16

[23] SEI Website, http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=28284, Accessed Sept’16

[24] SAGE Public Deliverables Page,
http://sagestorage.eu/research/deliverables, Accessed Sept’16

[25] John Bent, Brad Settlemyer, Haiyun Bao, Sorin Faibish,
Jeremy Sauer, and Jingwang Zhang. BAD-Check: Bulk
Asynchronous Distributed Checkpointing. In Petascale Data
Storage Workshop at SC15 (PDSW15), Austin, TX,
November 2015.

