Parallel I/O Characterisation Based on Server-Side Performance Counters

SC16: PDSW-DISC

November 14, 2016 | S. El SayedJSC M. BoltenKas D. PleiterJSC and W. FringsJSC |
JSC Jülich Supercomputing Centre, Forschungszentrum Jülich
Kas Institut für Mathmatik, Universität Kassel
CONTENTS

1 Motivation
2 Methodology
3 Characterisation Criteria
4 Selected Results
5 Summary
Parallel I/O Characterisation Based on Server-Side Performance Counters
Part I: Motivation
Motivation

Why analyse I/O?

- I/O to compute imbalance
 - Exascale I/O challenge to balance I/O bandwidth with instruction throughput
- Applications I/O requirements are increasing

Solution: Emerging I/O architectures

- Hierarchical storage
- Active storage

Key Point

Impact of emerging I/O architectures requires understanding I/O load characteristics on current high-end HPC systems
Contribution

1. Formulate an approach to monitor I/O workload using server-side performance counters
2. Introduce characterisation metrics to evaluate performance data
3. Use the approach to analyse collected data on a BlueGene/P system
Parallel I/O Characterisation Based on Server-Side Performance Counters
Part II: Methodology

November 14, 2016 | S. El SayedJSC M. BoltenKas D. PleiterJSC and W. FringsJSC
Methodology
Performance Counters

- Assuming an I/O sub-system that periodically (Δt) (for an extended time) logs 6 values:
 - Data read [Bytes]
 - Number of read operations [IOP]
 - Number of file open operations
 - Data written [Bytes]
 - Number of write operations [IOP]
 - Number of file close operations

- Some notation:

 Δt Logging time period
 t_0 Start time of logging
 v_i i-th logged value
 (v represents any of the 6 logged values)
Methodology
continue Performance Counters

- Pre-processing data might be required, for example:
 - To cope with lost data or counter resets
 - Synchronise I/O servers using linear interpolation

\[
\Delta \tilde{t} \quad \text{Interpolate period} \\
\tilde{t}_0 \quad \text{Global start of interpolation} \\
v_k \quad k\text{-th interpolated value}
\]

\[
\tilde{v}_k = v_i + \frac{(t_0 + k\Delta \tilde{t}) - (t_0 + i\Delta t)}{\Delta t} (v_{i+1} - v_i)
\]

where
\[
(t_0 + i\Delta t) \leq (\tilde{t}_0 + k\Delta \tilde{t}) \leq [t_0 + (i + 1)\Delta t].
\]
Methodology

Job information

- Collect job (Application run during I/O logging) information:
 - t_s Start time, t_e End time & n I/O servers used
- Pre-process job list
 - Filter job list, for example to remove erroneous jobs
 - Link performance counters to job

- Validate performance counters, preprocessing and linking job to performance counters using jobs with known I/O behaviour (Benchmarks)
Parallel I/O Characterisation Based on Server-Side Performance Counters
Part III: Characterisation Criteria
Characterisation Criteria
Basic Quantities

- Characterising I/O on a per job basis

\[D_r(l, s, t) \] Number of read operations of length \(l \) Bytes arriving at server \(s \) during \([t_s, t]\)

\[D_w(l, s, t) \] Number of write operations of length \(l \) Bytes arriving at server \(s \) during \([t_s, t]\)

\[\delta(s, t, \Delta t) \] Helper quantity with value 1 if more than \(c \) Bytes are moved

\[\delta_r(s, t, \Delta t) = \begin{cases}
1 & \text{if } \sum_l l [D_r(l, s, t + \Delta t) - D_r(l, s, t)] > c, \\
0 & \text{otherwise}
\end{cases} \]

where \(c \geq 0 \) is a threshold parameter.
Characterisation Criteria

Bandwidth

a Aggregate I/O volumes

\[N_r = \sum_l \sum_{s \in S} l \sum_l D_r(l, s, t) \]

where \(S \) is the set of I/O servers used by the job.

b Bandwidth

\[B_r(s, t) = \frac{1}{\Delta t} \sum_l [D_r(l, s, t + \Delta t) - D_r(l, s, t)] \]

c I/O operations per second (IOPS)

\[\Gamma_r(s, t) = \frac{1}{\Delta t} \sum_l [D_r(l, s, t + \Delta t) - D_r(l, s, t)] \]
Characterisation Criteria

I/O intensity

Considering:

\[
H(t, \Delta t) = \begin{cases}
1 & \delta(s, t, \Delta t) > 0 \quad \text{for any server } s , \\
0 & \text{otherwise}
\end{cases}
\]

\[H(t, \Delta t) = 1\] means I/O exceeded threshold \(c\) during \([t, \Delta t]\)

\[I = \frac{\Delta t \sum_{i=0}^{n} H(t_i, \Delta t)}{t_e - t_s}\]

where \(t_i = t_s + i \Delta t\) and \(t_s \leq t_i \leq t_e\) for \(i = 0, \ldots, n\)

\(0 \leq I \leq 1\), with \(I = 1\) indicating that application is performing continuous read or write.
Characterisation Criteria

Burstiness

Considering:

\[l_{\text{IO}} \text{ Average number of consecutive intervals } \Delta t \text{ with } H = 1 \]
\[l_{\text{noIO}} \text{ Average number of consecutive intervals } \Delta t \text{ with } H = 0 \]

Burstiness parameter

\[\rho = \begin{cases}
1 - \tanh\left(\frac{l_{\text{IO}}}{l_{\text{noIO}}} \right) & \text{if } l_{\text{noIO}} > 0, \\
0 & \text{otherwise}
\end{cases} \]

\(\tanh \) bounds burstiness parameter to the interval \([0,1]\).

Key Point

If a short period of I/O, i.e. \(l_{\text{IO}} \) is small, is followed by a long period without I/O, i.e. \(l_{\text{noIO}} \), becomes large, then we expect \(\rho \) to be close to 1.
Characterisation Criteria

Parallel I/O intensity

Considering:

\[\pi(t, \Delta t) = \frac{\sum_s \delta(s, t, \Delta t)}{|S|} \]

where \(|S| \) is the number of I/O servers used by the job.

\[\pi = 1 \] indicates in a given interval all servers read or write data beyond threshold \(c \)

Parallel I/O intensity

\[\Pi = \frac{\sum_i \pi(t_s + i\Delta t, \Delta t)}{\sum_i \delta(t_s + i\Delta t, \Delta t)} \]

Normalised:

\[P = \frac{|S| \Pi - 1}{|S| - 1} \]

\[P = 1 \] when I/O > \(c \) all I/O servers are involved

\[P = 0 \] when I/O > \(c \) only one I/O server is involved
Parallel I/O Characterisation Based on Server-Side Performance Counters
Part IV: Selected Results

November 14, 2016 | S. El SayedJSC M. BoltenKas D. PleiterJSC and W. FringsJSC
Selected Results
I/O sub-system background

- JUGENE (72 racks of BlueGene/P)
- I/O sub-system uses GPFS
- Performance counters logged on the 600 I/O nodes with $\Delta t = 120s$ for approximately 19 months
- Analysed 0.17 million jobs that ran over 1 hour

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
<th>Observable</th>
</tr>
</thead>
<tbody>
<tr>
<td>br</td>
<td>Bytes read</td>
<td>$\sum_i l D_R(l, s, t)$</td>
</tr>
<tr>
<td>bw</td>
<td>Bytes written</td>
<td>$\sum_i l D_W(l, s, t)$</td>
</tr>
<tr>
<td>rdc</td>
<td>Read requests</td>
<td>$\sum_i D_R(l, s, t)$</td>
</tr>
<tr>
<td>wc</td>
<td>Write requests</td>
<td>$\sum_i D_W(l, s, t)$</td>
</tr>
</tbody>
</table>
Selected Results
Aggregate I/O & maximum average bandwidth

- Max read 109.5 TiByte
- 80% read 12.7 GiByte or less
- 20% read 97.6% of total volume
- 80% read below 84 MiByte/s

- Max write 22.3 TiByte
- 80% wrote 15.3 GiByte or less
- 20% wrote 97.7% of total volume
- 80% wrote below 19 MiByte/s
Selected Results
I/O intensity, burstiness & Parallel I/O intensity

- 80% of analysed jobs are equal or below these values

<table>
<thead>
<tr>
<th>Threshold c</th>
<th>0 Byte read</th>
<th>128 KiByte read</th>
<th>1 MiByte read</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O intensity (I)</td>
<td>0.28</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td>Burstiness (ρ)</td>
<td>0.99</td>
<td>0.99</td>
<td>1.0</td>
</tr>
<tr>
<td>Parallel I/O intensity (P)</td>
<td>0.91</td>
<td>0.88</td>
<td>0.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Threshold c</th>
<th>0 Byte write</th>
<th>128 KiByte write</th>
<th>1 MiByte write</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O intensity (I)</td>
<td>1.0</td>
<td>0.34</td>
<td>0.12</td>
</tr>
<tr>
<td>Burstiness (ρ)</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Parallel I/O intensity (P)</td>
<td>1.0</td>
<td>0.28</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Parallel I/O Characterisation Based on Server-Side Performance Counters
Part V: Summary

November 14, 2016 | S. El SayedJSC M. BoltenKas D. PleiterJSC and W. FringsJSC
Summary & future work

- Server-side I/O performance counters enable monitoring the I/O load without change of application and with very low overhead
- The defined I/O criteria can be used to characterise I/O behaviour
- Analysing 0.17 million jobs on JUGENE reveal:
 - The data hitting the external storage system is relatively small
 - Most jobs have low I/O intensity
 - Jobs exhibit a bursty I/O
- Future work:
 - GPFS performance counters monitoring has been enabled on all large scale-systems at Jülich Supercomputing centre
 - Monitoring data has been integrated into LLview
 - We plan to apply the characterisation metrics to collected data and integrate these into LLview